История науки. ЦЕРН поделился атмосферными фотографиями быта института в 60-80е гг., включая несколько фотографий с необычного ракурса административных сотрудников, труд которых, конечно, тоже очень важен, но которых хотелось бы, чтобы было поменьше:
1) Женщина ищет интересные события в треках пузырьковой камеры, 1961 г.
2) Администратор Элиан де Модзелевска, ассистировавшая начальнику Эдоардо Амальди в ранние годы института, 1975 г.
3) Главный секретарь отделения теоретической физики Татьяна Фаберже, 1979 г.
4) Сотрудница пресс-службы Венди Корда, 1982 г.
5) Сотрудники архива, 1978 г.
6) Основательница женского клуба ЦЕРН Рени Адамс кушает тортик, 1989 г.
7) Библиотека, 1981 г.
8) А теперь — танцы! 1975 г.
9) Бригада тушения черных дыр, 1959 г.
10) Почтовое отделение, 1971 г.
Что думаете?
#scihistory
1) Женщина ищет интересные события в треках пузырьковой камеры, 1961 г.
2) Администратор Элиан де Модзелевска, ассистировавшая начальнику Эдоардо Амальди в ранние годы института, 1975 г.
3) Главный секретарь отделения теоретической физики Татьяна Фаберже, 1979 г.
4) Сотрудница пресс-службы Венди Корда, 1982 г.
5) Сотрудники архива, 1978 г.
6) Основательница женского клуба ЦЕРН Рени Адамс кушает тортик, 1989 г.
7) Библиотека, 1981 г.
8) А теперь — танцы! 1975 г.
9) Бригада тушения черных дыр, 1959 г.
10) Почтовое отделение, 1971 г.
Что думаете?
#scihistory
Цитата. "Математика может быть определена как предмет, в котором мы никогда не знаем ни того, о чем мы говорим, ни того, истинно ли то, о чем мы говорим. Я надеюсь, что люди, озадаченные истоками математики, найдут утешение в этом определении и, вероятно, согласятся с тем, что оно верно" (с) Бертран Рассел, "Мистика и логика и другие эссе", 1917 г.
Что думаете?
#цитата
Что думаете?
#цитата
Новости науки. Мы до сих пор совершенно не понимаем, как образуются сверхмассивные черные дыры. Наша собственная, в Млечном Пути, — не исключение. Она вроде и не особо большая — всего 4 миллиона солнечных масс (в сравнении с иногда десятками миллиардов солнечных в других галактиках), но у нее есть другие аномальные характеристики, которые трудно объяснить. К примеру то, что она довольно быстро вращается, а ось вращения наклонена на солидные 30° к галактической плоскости.
Проанализировав все имеющиеся на сегодняшний день данные, в частности — с Телескопа Горизонта Событий (это та самая штука, сделавшая Interstellar-like фоточки двух сверхмассивных черных дыр), ребята из Университета Невады в Лас-Вегасе заключили, что сформировалась-то наша сверхмассивная черная дыра в нынешнем виде не так уж давно — всего около восьми миллиардов лет назад — да не просто сама по себе, а в результате слияния двух черных дыр — одной тогдашней из нашей галактики, а другой — из давно почившей карликовой галактики Гайя-Энцелад, которая, как считается, столкнулась с нашей именно в тот период, около восьми миллиардов лет назад, и была разорвана на кусочки (сегодня звезды той галактики либо стали частью нашей, либо вращаются по сильно вытянутым орбитам за пределами Млечного Пути).
Ученым помогло то, что мы примерно знаем параметры того столкновения, то есть массы обеих галактик (масса Гайи-Энцелада составляла примерно миллиард солнечных, а ее сверхмассивная черная дыра была примерно в 4 раза легче нашей) и угол их сближения. Проведя симуляции, ученые выяснили, что слияние черных дыр с соответствующими импульсами очень хорошо объяснило бы параметры нашей нынешней сверхмассивной черной дыры.
Так что, вот так вот, наша центральная черная дыра не такая уж и старушка, получается. Ну, если ребята правы, конечно. К сожалению, все это не приближает нас к разгадке того, как же сверхмассивные черные дыры образуются изначально.
Статья опубликована в Nature Astronomy 6 сентября 2024 года.
Что думаете?
#news
Проанализировав все имеющиеся на сегодняшний день данные, в частности — с Телескопа Горизонта Событий (это та самая штука, сделавшая Interstellar-like фоточки двух сверхмассивных черных дыр), ребята из Университета Невады в Лас-Вегасе заключили, что сформировалась-то наша сверхмассивная черная дыра в нынешнем виде не так уж давно — всего около восьми миллиардов лет назад — да не просто сама по себе, а в результате слияния двух черных дыр — одной тогдашней из нашей галактики, а другой — из давно почившей карликовой галактики Гайя-Энцелад, которая, как считается, столкнулась с нашей именно в тот период, около восьми миллиардов лет назад, и была разорвана на кусочки (сегодня звезды той галактики либо стали частью нашей, либо вращаются по сильно вытянутым орбитам за пределами Млечного Пути).
Ученым помогло то, что мы примерно знаем параметры того столкновения, то есть массы обеих галактик (масса Гайи-Энцелада составляла примерно миллиард солнечных, а ее сверхмассивная черная дыра была примерно в 4 раза легче нашей) и угол их сближения. Проведя симуляции, ученые выяснили, что слияние черных дыр с соответствующими импульсами очень хорошо объяснило бы параметры нашей нынешней сверхмассивной черной дыры.
Так что, вот так вот, наша центральная черная дыра не такая уж и старушка, получается. Ну, если ребята правы, конечно. К сожалению, все это не приближает нас к разгадке того, как же сверхмассивные черные дыры образуются изначально.
Статья опубликована в Nature Astronomy 6 сентября 2024 года.
Что думаете?
#news
Цитата. "Я уже не так уверен в будущем квантовой механики. Это плохой знак, что те физики, которые сегодня наиболее комфортно чувствуют себя с квантовой механикой, не согласны друг с другом в том, что все это означает. Спор возникает главным образом относительно природы измерения в квантовой механике. Эту проблему можно проиллюстрировать на простом примере измерения спина электрона.
Все теории согласны, и эксперимент это подтверждает, что при измерении величины спина электрона в любом произвольно выбранном направлении возможны только два результата. Один возможный результат будет равен положительному числу, универсальной константе природы. (Это та самая константа, которую Макс Планк изначально ввел в своей теории теплового излучения 1900 года, обозначаемая h, деленная на 4π.) Другой возможный результат - его противоположность, отрицательное значение первой величины. Эти положительные или отрицательные значения спина соответствуют электрону, вращающемуся по часовой стрелке или против часовой стрелки в выбранном направлении.
Но только при проведении измерения эти два варианта являются единственно возможными. Спин электрона, который не был измерен, подобен музыкальному аккорду, образованному наложением двух нот, соответствующих положительному или отрицательному спинам, каждая со своей амплитудой. Подобно тому, как аккорд создает звук, отличный от каждой из составляющих его нот, состояние спина электрона, которое еще не было измерено, представляет собой суперпозицию двух возможных состояний определенного спина, качественно отличающуюся от обоих состояний. В этой музыкальной аналогии акт измерения спина каким-то образом смещает всю интенсивность аккорда к одной из нот, которую мы затем слышим отдельно..." (с) Стивен Вайнберг, "The trouble with quantum mechanics", 2017
Что думаете?
#цитата
Все теории согласны, и эксперимент это подтверждает, что при измерении величины спина электрона в любом произвольно выбранном направлении возможны только два результата. Один возможный результат будет равен положительному числу, универсальной константе природы. (Это та самая константа, которую Макс Планк изначально ввел в своей теории теплового излучения 1900 года, обозначаемая h, деленная на 4π.) Другой возможный результат - его противоположность, отрицательное значение первой величины. Эти положительные или отрицательные значения спина соответствуют электрону, вращающемуся по часовой стрелке или против часовой стрелки в выбранном направлении.
Но только при проведении измерения эти два варианта являются единственно возможными. Спин электрона, который не был измерен, подобен музыкальному аккорду, образованному наложением двух нот, соответствующих положительному или отрицательному спинам, каждая со своей амплитудой. Подобно тому, как аккорд создает звук, отличный от каждой из составляющих его нот, состояние спина электрона, которое еще не было измерено, представляет собой суперпозицию двух возможных состояний определенного спина, качественно отличающуюся от обоих состояний. В этой музыкальной аналогии акт измерения спина каким-то образом смещает всю интенсивность аккорда к одной из нот, которую мы затем слышим отдельно..." (с) Стивен Вайнберг, "The trouble with quantum mechanics", 2017
Что думаете?
#цитата
Изображение. Иногда и графики красивы! Это изображение, полученное на синхротроне DESY, одном из ярчайших источников рентгеновского излучения в мире, представляет собой визуализацию частотной гребенки, состоящей из равномерно рапределенных квантовых состояний. График демонстрирует отсчеты одиночных фотонов в логарифмическом масштабе, от светлого к темному. В этом эксперименте частотная гребенка впервые получена в рентгеновском диапазоне, что подчеркивает её потенциальное применение в качестве квантовой памяти, способной хранить рентгеновские фотоны. Сложно, но красиво.
Что думаете?
#scimage
Что думаете?
#scimage
APOD. Соединение Венеры и Юпитера на небесной сфере, фотографируемое индийским астрономом-любителем недалео от города Дханбад ежедневно с 21 февраля по 2 марта 2023 года. В течение 10 дней планеты шли друг к другу в гости, на чай, а в один из дней к ним даже присоединилась Луна (но надолго не задержалась). В момент наибольшего сближения их разделяло менее лунного диска. Однако не стоит забывать, что все это иллюзия, вызванная проекцией разноудаленных в пространстве объектов на двумерную небесную сферу, и что даже в момент максимального сближения планеты разделяли сотни миллионов километров космического ужаса.
Что думаете?
#apod
Что думаете?
#apod
Новости науки. Астрофизики из Технологического института в Рочестере открыли новый способ образования планет — из останков разрушаемых звезд.
Обычные планетные системы образуются одновременно со своей родительской звездой — в результате коллапса газопылевого облака, являющегося исходным материалом как для звезды, так и для планет.
Однако иногда ученые обнаруживают космические объекты, не укладывающиеся в такой сценарий формирования. Например, планетная система WD 1856+534, расположенная в 80 световых годах от нас и состоящая из белого карлика и газового гиганта размером с Юпитер. Проблема здесь в том, что газовый гигант обращается настолько близко к звезде (в 50 раз ближе, чем расстояние между Землей и Солнцем), что объяснить его формирование обычным сценарием никак нельзя.
Покумекав, как же такое могло произойти, астрофизики сочинили новую гипотезу. Вполне вероятно, что раньше система представляла собой двойную, состоящую из белого карлика и звезды типа Солнца. В таких системах, если расстояние между компонентами не велико, массивный белый карлик часто перетягивает на себя материал звезды-компаньона, частично аккумулируя его на себя, частично выбрасывая в межзвездное пространство, а частично оставляя рядом в виде аккреционного диска. Часто, в результате этого процесса вторая звезда полностью разрушается. И тут ученые подумали, что ведь ничто не запрещает планете сформироваться из аккреционного диска, аналогично тому, как в стандартном сценарии это происходит из диска протопланетного. Это объяснило бы и то, почему планета находится так близко. А остаток аккреционного диска со временем рассеился бы, оставив лишь новорожденную планету. Так что, вполне вероятно, что новорожденная планета вылезла прямиком из умирающей звезды.
К сожалению, пока что подтвердить такую гипотезу формирования не представляется возможным, ибо других подобных систем на отличных стадиях эволюции у нас нет. Помочь смог бы спектральный анализ новой планеты — ее элементный состав мог бы подсказать, из звезды на какой стадии эволюции планета образовалась. Но и здесь чувствительности наших приборов пока недостаточно.
Работа опубликована в arXiv 19 июля 2024 года.
Изображение: гипотетический вид системы по версии Eyes on exoplanets
Что думаете?
#news
Обычные планетные системы образуются одновременно со своей родительской звездой — в результате коллапса газопылевого облака, являющегося исходным материалом как для звезды, так и для планет.
Однако иногда ученые обнаруживают космические объекты, не укладывающиеся в такой сценарий формирования. Например, планетная система WD 1856+534, расположенная в 80 световых годах от нас и состоящая из белого карлика и газового гиганта размером с Юпитер. Проблема здесь в том, что газовый гигант обращается настолько близко к звезде (в 50 раз ближе, чем расстояние между Землей и Солнцем), что объяснить его формирование обычным сценарием никак нельзя.
Покумекав, как же такое могло произойти, астрофизики сочинили новую гипотезу. Вполне вероятно, что раньше система представляла собой двойную, состоящую из белого карлика и звезды типа Солнца. В таких системах, если расстояние между компонентами не велико, массивный белый карлик часто перетягивает на себя материал звезды-компаньона, частично аккумулируя его на себя, частично выбрасывая в межзвездное пространство, а частично оставляя рядом в виде аккреционного диска. Часто, в результате этого процесса вторая звезда полностью разрушается. И тут ученые подумали, что ведь ничто не запрещает планете сформироваться из аккреционного диска, аналогично тому, как в стандартном сценарии это происходит из диска протопланетного. Это объяснило бы и то, почему планета находится так близко. А остаток аккреционного диска со временем рассеился бы, оставив лишь новорожденную планету. Так что, вполне вероятно, что новорожденная планета вылезла прямиком из умирающей звезды.
К сожалению, пока что подтвердить такую гипотезу формирования не представляется возможным, ибо других подобных систем на отличных стадиях эволюции у нас нет. Помочь смог бы спектральный анализ новой планеты — ее элементный состав мог бы подсказать, из звезды на какой стадии эволюции планета образовалась. Но и здесь чувствительности наших приборов пока недостаточно.
Работа опубликована в arXiv 19 июля 2024 года.
Изображение: гипотетический вид системы по версии Eyes on exoplanets
Что думаете?
#news
Изображение. Нано-круассаны на подложке из графена/Ni(100), измеренные с помощью сканирующего туннельного микроскопа. В роли нано-круассанов выступают наночастицы кобальта. Обратите внимание, что все наночастицы практически идентичной формы. Конечно же, это артефакт измерения — видимо, на иглу микроскопа налипла какая-то гадость, которая придает всем объектам на поверхности "свою" форму. Это хорошая иллюстрация того, как важна правильная интерпретация данных и как важно хорошо знать свое оборудование.
Что думаете?
#scimage
Что думаете?
#scimage
Изображение. А вот, как сотрудники Лаборатории реактивного движения NASA встретили Хэллоуин:
1) Групповое фото;
2) Астронавтка выгуливает зверька на поводке;
3) Инопланетянин, притворяющийся сотрудником лаборатории. Похож!
4) Ребята в костюме колбочек для образцов грунта запланированной миссии Mars Sample Return;
5) Сотрудник в костюме марсианского вертолетика Ingenuity управляет своим ровером (на самом деле, всё происходит наоборот);
6) Целая Луна и выводок приближающихся к ней мини-роверов CADRE из запланированной на 2025 г. миссии.
Что думаете?
#scimage
1) Групповое фото;
2) Астронавтка выгуливает зверька на поводке;
3) Инопланетянин, притворяющийся сотрудником лаборатории. Похож!
4) Ребята в костюме колбочек для образцов грунта запланированной миссии Mars Sample Return;
5) Сотрудник в костюме марсианского вертолетика Ingenuity управляет своим ровером (на самом деле, всё происходит наоборот);
6) Целая Луна и выводок приближающихся к ней мини-роверов CADRE из запланированной на 2025 г. миссии.
Что думаете?
#scimage
Изображение. Близится к завершению строительство китайского детектора нейтрино JUNO (Jiangmen Underground Neutrino Observatory) — огромной подземной сферы диаметром 35.4 метра, заполненной 20 000 тонн линейного алкилбензола (ЛАБ), играющего роль сцинтиллятора. При редких актах взаимодействия с нейтрино ЛАБ испускает фотоны, преобразуемые в электрический сигнал 43 200 фотоумножителей, вмонтированных в стальную оболочку сферы. Предполагается, что детектор будет ловить космические нейтрино, а также нейтрино, испускаемые находящимися поблизости атомными электростанциями.
Мы всё ещё многого не знаем об этих частицах-призраках. Например, как разные их сорта (всего их известно три — электронное, мюонное и тау) отличаются по массе, а эта информация крайне важна для дальнейшего развития наших моделей элементарных частиц. Будем надеяться, что детектор, запуск которого запланирован на конец года, поможет пролить немного фотонов на нейтринные тайны.
Что думаете?
#scimage
Мы всё ещё многого не знаем об этих частицах-призраках. Например, как разные их сорта (всего их известно три — электронное, мюонное и тау) отличаются по массе, а эта информация крайне важна для дальнейшего развития наших моделей элементарных частиц. Будем надеяться, что детектор, запуск которого запланирован на конец года, поможет пролить немного фотонов на нейтринные тайны.
Что думаете?
#scimage
Цитата. "Послушайте, ничто в физике не является полностью понятым. Мы всегда постепенно развиваем наше понимание практически любого феномена. Если, говоря, что что-то понятно, вы имеете в виду некоторое финальное, абсолютное понимание, которое никогда не изменится, — я думаю, что почти ничто в физике не соответствует этому. Если же вы имеете в виду некоторый текущий консенсус или правила использования и составления предсказаний — я думаю, в этом смысле мы хорошо понимаем, что такое энтропия" (с) Леонард Сасскинд, отвечая на вопрос, понимаем ли мы, что такое энтропия.
Что думаете?
#цитата
Что думаете?
#цитата
История науки. ЦЕРНовский генератор Ван де Граафа, являвшийся важной частью кругового ускорителя CESAR (CERN Electron Storage and Accumulation Ring — кольца хранения и накопления электронов) с длиной кольца в 24 метра, запущенного в 1964 году. Относительно небольшой ускоритель позволил отработать технологии, впоследствии легшие в основу более крупных машин — ISR (Intersecting storage ring), первого в мире коллайдера адронов, а впоследствии и Большого Адронного Коллайдера. Общий вид самого CESAR показан на последней фотографии.
Что думаете?
#scihistory
Что думаете?
#scihistory