Вселенная Атомов
558 subscribers
609 photos
86 videos
639 links
Вселенная атомов, атом во вселенной.

На канале публикуются заметки по различным направлениям естественных наук, их истории и персоналиям. Проникнись духом науки!

Наш чат: t.me/spacegateway
Download Telegram
Новости науки. Интересный девайс сконструировали физики из ETH в Цюрихе.

Наверное, все слышали про акустическую левитацию, когда предмет подвешивается в карманах разреженного воздуха в стоячей звуковой волне. Да я об этом уже и писал пару раз.

Аналогичный эффект можно организовать с помощью световых волн - в этом случае обычно говорят о вакуумной левитации. Здесь с помощью лазерного излучения, заключенного между концами оптоволокна, создается стоячая электромагнитная волна, в которой тоже можно удерживать предметы. Как можно догадаться, "несущая способность" такого левитатора будет гораздо ниже. Пока что таким образом удавалось левитировать лишь крошечные нано и микрочастицы материала, чаще всего кремния.

Обычно такие экспериментальные установки весьма сложны, содержат килограммы вкусного кабельсалата и громоздкие криостаты. Новое достижение заключается в том, что вакуумный левитатор удалось организовать на маленьком чипе с размером около одного миллиметра. В этом устройстве микрочастица кремния подвешивается в вакууме с помощью двух перпендикулярных стоячих световых волн с длинами 1064 и 1550 нм, а для дополнительного охлаждения (успокаивания) частицы используется расположенная на подложке система электродов - она позволяет отнимать у частицы энергию движения за счет взаимодействия с электромагнитным полем электродов.

Такое миниатюрное устройство в будущем может послужить в каких-нибудь хитрых сенсорах или стать игрушечной системой для проверки всяких там хитрых квантовых законов.

Препринт статьи опубликова в arXiv 23 ноября 2023 года.

Что думаете?

#news
Новости науки. Ребята из немецкого Юлиха и шведской Уппсалы обнаружили доселе гипотетические хопфионы — трехмерные квазичастицы из электронных спинов.

Сложны и многообразны структуры, образуемые материей. Практически каждая характеристика, присущая микрочастицам, может лечь в основу какой-нибудь интересной структуры, формируемой ими в материалах. Не исключением является и спин — собственный момент импульса электронов.

Интересными структурами из спинов (помимо обычных магнитных состояний вещества — пара-, ферро-, ферримагнетизма и подобных) являются скирмионы и хопфионы — хорошо локализованные, на манер частиц, конфигурации электронных спинов в метариале. Скирмионы, двумерные спиновые "воронки", обнаружены уже довольно давно, но продолжают привлекать внимание исследователей (хотя их до сих пор никто не понимает). А вот хопфионы — трехмерный и более сложный аналог скирмионов — до сих пор существовали лишь в симуляциях и моделях теоретиков.

В простейшем виде хопфион можно представить как цепочку спинов, образующих что-то вроде тора пончика. Их удалось обнаружить в железо-германиевом сплаве с помощью электронной микроскопии и даже наделать красивых фоточек.

Высокая локализованность хопфионов и скирмионов в пространстве (благодаря чему они и ведут себя подобно частицам) делает их интересными для возможных применений в области спинтроники. Но мы их любим уже только за то, что они офигенные.

Статья опубликована в Nature 22 ноября 2023 года.

Что думаете?

#news
Новости науки. Стремление все каталогизировать и загнать в рамки добралось и до лунной геологии (или, вернее сказать, "селенологии"). Группа геологов из университетов Канзаса и Северной Каролины предположили провозгласить наступление новой лунной эпохи — лунного антропоцена.

Мы привыкли думать, что Луна практически неизменна и кроме редких метеоритных ударов там ничего не происходит. Это верно... если не учитывать человеческое воздействие. Начиная с 13 сентября 1959 года, когда на поверхность Луны опустилась первая автоматическая станция "Луна 2", человек стал важным фактором формирования лунной экологии. За десятилетия, прошедшие с того дня, на поверхности Луны побывали (иногда в разобранном состоянии) сотни космических аппаратов (многие из которых там и останутся) и даже несколько человеческих тел.

Более того, некоторые страны снова вспомнили про Луну и решили после некоторого затишься туда вернуться. Ожидается, что в ближайшие годы на Луне будут непрерывно работать миссии ряда государств.

Учитывая все это, ученые подсчитали, что влияние, оказываемое человеком на лунную поверхность, уже перевешивает изменения за счет не-человеческих процессов (не хочу писать "природных", так как человек часть тоже природы).

Вот что по этому поводу пишет автор исследования Джастин Холкомб: "Культурные процессы начинают опережать естественную динамику лунной геологии. Эта динамика включает перемещение отложений, которые мы называем «реголитом». Воздействие марсоходов, посадочных модулей и передвижение людей оказывают существенное воздействие на реголит. В контексте новой космической гонки лунный ландшафт через 50 лет будет совершенно иным. Там будут присутствовать несколько стран, что приведет к многочисленным проблемам. Наша цель — развеять лунно-статичный миф и подчеркнуть важность нашего воздействия не только в прошлом, но и в настоящем, и в будущем. Мы хотим начать дискуссию о нашем воздействии на лунную поверхность, пока не стало слишком поздно".

Таким образом Холкомб с соавторами предложили провозгласить наступление новой лунной селенологической эпохи - лунного антропоцена (сиречь, человеком порожденного). Привлечение внимания к этой проблеме призвано сохранить как естественное, так и уже поднакопившееся культурное наследие Луны.

Короткая заметка опубликована в Nature Geoscience 8 декабря 2023 года.

Что думаете? Имеют ли предложение и дискуссия смысл?

#news
Новости науки. Когда-то я писал о том, что ученые научили мини-мозг — сгусток человеческих нейронов — играть в понг. Узрите новое исследование в этой области! В этот раз отличились ученые из Университета Индианы, которые научили комочки из нервных клеток различать человеческие голоса.

Принцип довольно похожий — шарик из нервных клеток высаживается на подложку, содержающую электрические контакты, часть из которых является входными — они подают сигнал нейронам, — а часть выходными — принимающими сигнал от них. Далее ученые записали 240 голосов разных людей, преобразовали голоса в электрические сигналы и скормили их мини-мозгу. Сделав это, они заметили, что отклик, выдаваемый нейронам, немного различается для разных голосов. Затем они присобачили к этому делу нейросеть (уже кремниевую), которую научили из реакции мини-мозга определять, чей голос он сейчас "слышит". Покамест, доля успешно идентифицированных голосов держится на всё же не таком маленьком уровне в 78%. Но лиха беда начало!

Дадим ребятам еще немножко средств налогоплательщиков, и, может, они научатся создавать полноценные биологические компьютеры из нервных клеток, которые поработят человечество могут оказаться гораздо более энергоэффективными или быстрыми.

Справедливости ради стоит заметить, что ранее подобные эксперименты уже проводились, но только с двумерными нервными тканями, а не трехмерными комочками, как здесь.

Статья опубликована в Nature Electronics 11 декабря 2023 года.

Что думаете?

#news
Новости науки. Уходящий год стал рекордсменом по одному довольно интересному параметру. Более 10 000 научных статей было отозвано в этом году, что является абсолютным рекордом с большим отрывом за всю историю существования научных издательств. Соответствующей статистикой поделился журнал Nature.

Рекорд поставлен не только по абсолютным, но и по относительным цифрам — примерно 0.2% всех опубликованных работ были отозваны. Основным "отзывателем" стало одно из крупнейших издательств Wiley, только на его счету 8000 работ, перечеркнутых с формулировками "опасение, что процесс рецензирования был скомпрометирован" и "систематические манипуляции процессом публикации и рецензирования".

Среди стран, опубликовавших больше 100 000 работ за последние два десятилетия, рекордсменами по отозванным статьям являются Саудовская Аравия, Пакистан, Россия и Китай. В таком порядке.

Всего за всю историю научного статьеиздательства было отозвано около 50 000 работ, так что цифра за этот год (добрые 20%) действительно внушительная.

Причем, по словам издательств, это лишь вершина айсберга, и отозвать следует гораздо больше. Количество статей, выпущенных так называемыми «бумажными фабриками» — предприятиями, которые продают учёным поддельные работы и авторские права — оценивается в сотни тысяч. Это не считая "честных" статей, которые просто могут быть ошибочными с научной точки зрения.

Ну а пока издательства ужесточают требования, научному сообществу стоит приготовиться к тому, что публиковать статьи в будущем станет еще сложнее.

Что думаете?

#news
Новости науки. Новый способ измерения расстояния до звезд придумали астрофизики из EPFL — с использованием того, что сами они называют "звездной музыкой".

Способ чем-то похож на определение расстояния до цефеид. Напомню, что цефеиды это переменные звезды, яркость которых колеблется по синусоиде с периодом в несколько дней, а сам этот период очень хорошо связан со светимостью звезды. Определив период, мы узнаем светимость, а сравнив светимость с видимой яркостью — можем рассчитать, как делако звезда находится от нас. Сложность здесь, однако, в том, что работает это только для очень специфического вида звезд.

Новый метод гораздо более тонок, он заключается в измерении паттернов сейсмической активности звезды. Было установлено, что характер того, как распространяются сейсмические волны (грубо говоря, звук) внутри звезд, хорошо коррелирует с их размером и температурой (или спектральным классом). Таким образом, измеряя спектр звуковых колебаний, производимых звездой, можно узнать ее размер, а из размера рассчитать светимость. Ну а дальше все, как у цефеид.

Хотя такие измерения гораздо более трудоемки — сейсмические колебаная во много-много раз меньше колоссальной переменности цефеид — метод этот применим (или может стать применимым в будущем) к практически любым видам звезд. В тестовых измерениях, ученые уже сумели определить расстояния до звезд, находящихся в 15 000 световых лет от нас. Это далеко. Для сравнения, самый распространенный метод определения расстояния до звезд с помощью параллакса на таких расстояниях работает только с довольно высокой погрешностью в несколько десятков процентов.

Ну а следующее поколение космических телескопов, например TESS и PLATO должны позволить нам измерять сейсмическую активность звезд еще точнее, а это значит, что мы сможем еще лучше узнавать, где они находятся.

Статья опубликована в Astronomy and Astrophysics 25 августа 2023 года.

Что думаете?

#news
Новости науки. Множество методов изобрели ученые, чтобы узнавать, какие события происходили в далеком прошлом. На слуху методы радиоизотопного анализа, позволяющие датировать образцы по содержащимся в них радиоактивным веществам. Есть, однако, и не такие популярные, но от этого не менее интересные методики. К примеру, палеомагнетизм и археомагнетизм. Когда образуется горная порода, содержащая магнитные вещества (железо, кобальт, никель), — к примеру, при застывании лавы — магнитные моменты в веществе ориентируются в соответствии с направление и величиной магнитного поля планеты на момент формирования. Соответственно, если мы находим комплекс горных пород, содержащих железо и образовавшихся в разное время, то, измерив их магнетизм, можем сказать, как менялось магнитное поле Земли многие тысячи или миллионы лет назад. Это палеомагнитезм. Археомагнетизм — то же самое, но изучаются человеческие изделия. Например, глиняные кирпичи.

Когда древние месопотамцы изготавливали кирпичи, то помечали каждый клеймом с именем правившего тогда царя. По этим данным можно примерно сообразить, когда каждый кирпич был изготовлен. Международная группа археологов отыскала где-то 32 месопотамских кирпича из разных периодов между третьим и первым тысячелетиями до н.э., отколола от каждого крохотный кусочек (больше нельзя — ценнейшее культурное наследие) и изучила собственное магнитное поле получившихся образцов. Более того, кирпичные магнитные данные были сравнены со сведениями от коллег-пелеомагнетологов.

Выяснилось то, что все и так прекрасно знали, — что в период между 1050 и 550 годами до н.э. наблюдалась так называемая Ливантская магнитная аномалия железного века (Levantine Iron Age geomagnetic Anomaly, LIAA) — загадочное краткосрочное повышение магнитного поля планеты. Ну, это уже само по себе ценно, когда удается подтвердить старые результаты. Но в этот раз ученым удалось заметить и кое-что еще: между примерно 604 и 562 гг, во время правления вавилонского царя Навуходоносора II, происходили еще более краткосрочные и драматические флуктуации магнитного поля. Почему это происходило, мы, само собой, сказать не сможем. Вероятно, никогда.

Результаты исследования, как сказал бы ведьмак Геральт, — обоюдоострый меч. С одной стороны, мы получили более подробные сведения о магнитном поле планеты, а с другой — по сравнительным данным от палеомагнетизма — смогли уточнить годы правления древних царей. Круто?

Статья опубликована в Proceedings of the National Academy of Sciences 19 декабря 2023 года.

Что думаете?

#news
Новости науки. Мы привыкли представлять себе Нептун, как насыщенный синевой шар, а Уран гораздо менее контрастным и по оттенку ближе к зеленому. Ученым, изучающим эти планеты, давно известно, что они совершенно не такие. Дело в том, что единственный аппарат, которому довелось сфотографировать эти планеты вблизи — Вояджер 2 — был оснащен только монохромной камерой, а цвета определялись с помощью наложения различных фильтров. Несколько таких отфильтрованных изображений складывались в композитный снимок, цвет которого зависел от балансировки отдельных диапазонов. Так, Нептун был совершенно сознательно сделан более насыщенным, чтобы подстветить детали планеты.

Но как эти планеты выглядят на самом деле? Восстановить естественные цвета, вообще говоря, не такая уж тривиальная задача. Ученые из Университета Оксфорда, озаботившись данной проблемой, использовали данные спектрографов телескопа Хаббла и Очень большого телескопа в Чили. Их приборы позволяют увидеть натуральнный оттенок Урана и Нептуна, но, естественно, далеко не в таком высоком разрешении, как снимки Вояджера. Однако, по их данным ребятам удалось определить правильный баланс цветов и обработать сырые снимки заново с правильными весами.

Выяснилось, что Уран и Нептун внешне почти одинаковы — очень бледные и лишенные особых деталей зеленоватые шары. Похвалим же ученых за то, что благодаря им космос стал чуточку скучнее.

Статья опубликована в Monthly Notices of the Royal Astronomical Society 12 сентября 2023 года.

Что думаете?

#news
Новости науки. Из чего состоят облака Венеры? Известно, что они в основном содержат серную кислоту, воду, хлор и железо. Однако в них присутствует и что-то ещё, давно не дающее покоя исследователям нашей планетарной соседки. До сих пор не идентифицированное вещество присутствует в венерианских облаках и хорошо заметно в ультрафиолетовом диапазоне в виде характерных пятен и полос.

И вот намедни ученым из Кембриджа наконец удалось разгадать загадку облачной субстанции. Оказалось, что это смесь из двух минералов — сложного сульфата ромбоклаза и чуть более простого, но то же сульфата — сульфата железа.

Обнаружить их было непросто. Ученым пришлось перепробовать множество комбинаций из минералов, устойчивых к едкому венерианскому климату. В своей лаборатории они создали камеру с атмосферой, близкой к венерианской, облучали ее "солнечным" светом и запускали туда вещества-кандидаты. Используя спектр поглощения ультрафиолетового излучения, после множества попыток наконец-то удалось сузить количество соискателей до двух вышеназванных, спектр которых совпал с искомым. По-видимому, эти минералы присутствуют в атмосфере в виде взвеси частиц, поднимаемых с поверхности сильными ветрами, характерными для этой планеты.

Исследование опубликовано в Science Advances 3 января 2024 года.

Что думаете?

#news
Новости науки. Самые большие (как по площади, так и по высоте) горы на нашей планете — Тибетское нагорье — сформировались, когда не соблюдающая скоростного режима Индийская тектоническая плита впечаталась в Евразийскую плиту около 60 миллионов лет назад. Волею судеб, Индия стала подминаться под Евразию, а Евразии, соответственно, пришлось немного (всего на восемь километров) приподняться. Долгое время понимание геологами данного процесса этим и ограничивалось.

Однако в недавнем исследовании ученым из США и Китая удалось с помощью подробного анализа тектонических данных и тщательного моделирования выяснить некоторые подробности процесса столкновения двух тектонических плит, которые оказались довольно интересными.

Выяснилось, что Евразия не просто подминает Индийскую плиту, но разрезает ее пополам в горизонтальной плоскости. При этом нижняя часть, состоящая из более тяжелых пород, постепенно опускается глубже в раскаленную мантию, а более легкая верхняя половина продолжает движение напосредственно под поверхностью Евразии. Процесс этот очень неравномерный. Где-то нижняя кора Индии разрушается быстро, а где-то остается почти нетронутой.

С какой бы скоростью эти ужасы ни происходили, в ближайшие миллионы лет опасаться нечего. Однако исследование несомненно обогатит наше понимание геологических процессов и поможет лучше предсказывать всякие нехорошие события.

Статья пока что доступна лишь в препринте ESS Open Archive.

Что думаете?

#news
Новости науки. Намедни обсуждали, что если включать цветочкам различные музыкальные композиции (лучше классику, само собой), то их темп развития и здоровье ускоряются, а музыкальный вкус улучшается. Оказывается, справедливо это не только для растений, но и для других классов живых организмов.

Ученые из Австралии изучили, что происходит, если воздействовать звуком на почвенные грибы, а именно на Trichoderma harzianum, и обнаружили, что постоянное присутствие звука с частотой 8 кГц и громкостью 80 дБ положительно влияет на увеличение биомассы и споровую активность гриба. Гриб этот, надо сказать, хороший и способствует здоровью почвы, так что никаких преступлений ученые не совершили.

Почему так происходит, не совсем понятно, однако у исследователей есть гипотеза! Они считают, что данные грибы умеют каким-то образом преобразовывать энергию звука в электрические импульсы, помогающие им в жизнедеятельности.

Кстати, кроме грибов ученые также помещали в почву обычные чайные пакетики и тоже наблюдали более высокий темп их разложения (забавно, что чайные пакетики достаточно часто используются в подобных исследованиях). Так что, по всей видимости, и на бактерии в почве звуки оказывают благоприятное воздействие.

Если кого-то интересует не только радость познания природы, но и практические применения открытий, то данное исследование может помочь восстанавливать здоровье почвы сельскохозяйственных угодий, значительная часть которых поверждена из-за интенсивного использования.

Препринт статьи доступен по ссылке вот тут — тыц.

Что думаете?

#news
Новости науки. В Солнечной системе появился еще один океан, самый маленький. Вернее, появился он давно, но мы только что о нем узнали. Принадлежит он небольшому спутнику Сатурна — Мимасу — с диаметром всего 400 км.

Мы примерно представляем себе, как должны выглядеть небесные тела, у которых есть подповерхностный океан. И несколько таких тел (Энцелад, Европа, Ганимед) нам известны. И Мимас на них вот вообще не похож. Однако в его движении по орбите наблюдаются некоторые неоднородности, которые свидетельсвуют о том, что что-то здесь не так. Это небольшие либрации оси вращения спутника, а также необычно большая прецессия его орбиты. Раньше считалось, что вызывается такое поведение тем, что ядро Мимаса имеет вытянутую эллиптическую форму. Но, проведя тщательные измерения параметров орбиты и моделирование, гипотеза о вытянутости ядра была отброшена, и осталось только одно объяснение — подледный океан.

Почему же тогда Мимас совсем не выглядит, как спутник с подледным океаном? У него испещренная кратерами, очень неровная поверхность, что весьма нехарактерно для таких тел. Ученые пришли к выводу, что причина в том, что океан возник очень недавно по космическим меркам — всего от 5 до 15 миллионов лет назад, и поверхность спутника еще не успела перестроиться. Причиной, спровоцировавшей образование океана, стало изменение орбиты тела из-за взаимодействия с соседями — Энцеладом и Тефией. Орбита спутника, которая раньше была почти круглой, вытянулась в эллиптическую, что приводит к большим деформациям при движении вокруг гиганта и разогреву недр тела.

Ученым даже удалось выяснить, на какой глубине океан начинается. Толщина поверхностной корки льда составляет примерно 20-30 км.

Учитывая, что океан очень молодой, изучать его особенно интересно, ведь мы имеем возможность понаблюдать критическую перестройку структуры небесного тела в зародыше.

Исследование опубликовано в Nature 7 февраля 2024 года.

Что думаете?

#news
Новости науки философии(?). Экспериментальный философ (кек) из Университета Аризоны запустил забавный эксперимент. Он установил "тысячелетнюю камеру" с видом на горный пустынный ландшафт. Задумка в том, чтобы провести непрерывную экспозицию в течение следующей тысячи лет и посмотреть, что получилось в 31 веке. По словам философа, мы совсем не задумываемся о долгосрочной перспективе, и его проект призван напоминать нам делать это почаще.

Интересно устройство камеры, ведь для обеспечения такой длинной выдержки нужны совершенно особенные и особенно долговечные материалы. Камера отбирает совсем немного света через небольшой пинхол. Далее свет проходит через слой золотой фольги, призванной дополнительно ослабить световой поток, а затем попадает на поверхность, обработанную красителем мареной. Естественно, никто в жизни не делал подобных камер, и удастся ли получить хоть какое-то изображение, совершенно не ясно. Узнаем в 31 веке.

Что думаете?

#news
Новости науки. Когда неосторожная звезда осмеливается слишком близко подлететь к сверхмассивной черной дыре, может произойти то, что астрономы называют событием приливного разрушения, — колоссальное гравитационное воздействие черной дыры разрывает звезду на части, звезда при этом спагеттифицируется, а в окружающую вселенную выделяется колоссальное количество энергии, как бы предупреждая окружающие звезды держаться от этого здоровяка подальше.

До сегодняшнего дня астрономы смогли пронаблюдать около десятка подтвержденных событий приливного разрушения, большинство из которых были обнаружены по сильным вспышкам в оптическом и рентгеновском диапазонах.

Свежие результаты, опубликованные астрономами из MIT, позволили добавить аж целых 18 новых позиций в список скушанных звезд. Ученые обнаружили, что многие события приливного разрушения остаются скрытыми, так как облака межзвездного газа, в изобилии присутствующие во многих галактиках, умеют хорошо поглощать как раз те диапазоны оптического и рентгеновского излучения, в которых трапеза черных дыр наиболее заметна. Чтобы обойти это ограничение, астрономы испробовали новый диапазон — инфракрасный — и действительно, обнаружилось, что и в нем можно увидеть следы приливного разрушения.

Набросав новый алгоритм обнаружения, ученые проанализировали архивные данные инфракрасных обсерваторий и нашли множество ранее незамеченных событий, и в частности, самое близкое из обнаруженных — в галактике NGC 7392, всего в 137 миллионах световых лет от нас.

Результаты показывают, что приливные разрушения происходят гораздо чаще, чем считалось ранее, просто искать надо лучше.

Новое открытие также помогло решить "проблему пропавшей энергии" — наблюдаемая энергия событий приливного разрушения оказывалась меньше теоретических предсказаний. Теперь ясно, что ответственность за это несет космическая пыль.

Статья опубликована в The Astrophysical Journal 29 января 2024 года.

Что думаете?

#news
Новости науки. Возрадуемся, ибо нам удалось еще немножко уменьшить наше понимание вселенной!

Уже довольно давно никто не понимает, что такое темная материя и темная энергия, которые в совокупности составляют примерно 96% энергии вселенной. А раз так, то мыслители всех мастей пытаются не только лишь их понять (безуспешно), но и придумывают всякие альтернативные гипотезы, позволившие бы совсем отказаться от этих двух субстанций. До сей поры все предложенные альтернативные объяснения либо отвергались сразу, либо просто не завоевывали популярности. Однако отважные ученые продолжают рисковать своей научной репутацией и придумывать новые!

Вот и некто Ражендра Гупта из Университета Оттавы предложил модель, которая позволяет полностью отказаться от темной энергии и темной материи. Он комбинирует две ранее уже существовавшие гипотезы — гипотезу стареющего света, согласно которой, характеристики световой волны медленно меняются по мере его движения в космосе в течение миллиардов лет; и гипотезу ковариационных констант связи (ССС), гласящую, что характеристики фундаментальных взаимодействий тоже дрейфуют со временем. Обе эти гипотезы по отдельности ранее уже опровергались, так как содержат всякого рода нестыковки. По-видимому, автору удалось скомбинировать их так, чтобы эти нестыковки устранить (в дебри математики я, конечно, не полезу), да еще и опубликовать свою теорию в престижном журнале. Например, в рамках его модели вселенной не 13, а 26 миллиардов лет, а наблюдаемый возраст и ускоренное расширение вселенной объясняются именно тем, что раньше физические константы были иными. Автор также апеллирует к наблюдению ранних галактик, якобы подтверждающим его выводы.

Что ж, лично мне обе эти гипотезы кажутся достаточно красивыми, а в их достоверности пусть разбираются соответствующие теоретики. Пошатнет ли эта работа текущую космологическую парадигму или пополнит стопочку статей неудавшихся альтернативных теорий, покажет время и последующие исследования.

Работа опубликована в The Astrophysical Journal 15 марта 2024 года.

Что думаете?

#news
Новости науки. К сожалению, до одних из самых интересных объектов во вселенной — черных дыр, вестимо — нам пока никак не добраться. Однако предприимчивые физики не унывают и придумывают способы моделировать их в лабораторных условиях с помощью того или иного рода аналогов. Физики из английского Ноттингема используют для этого казалось бы совсем отличную систему, которая, как выясняется, в некоторых аспектах описывается почти идентичными уравнениями — вращающуюся сверхтекучую жидкость.

Заставить сверхтекучую жидкость вращаться, вообще говоря, не так-то просто. В нормальных жидкостях вращение возникает благодаря трению между соседними "слоями" жидкости. В сверхпроводящих же жидкостях трение по определению отсутствует. Чтобы заставить их вращаться, необходимо создать так называемый квантовый вихрь — очень аккуратно, чтобы не разрушить квантовое состояние, придать вращение всему объему целиком.

Так вот, оказалось, что эти самые квантовые вихри, вращающиеся с достаточно большой скоростью, математически описываются уравнениями, почти идентичными тем, что используются для горизонтов событий настоящих черных дыр. С той разницей, что в роли поглощаемого света здесь выступают кванты звуковых волн, распространяющиеся в жидкости. Такую систему называют акустической черной дырой (это один из видов так называемых "гравитационных аналогов") и в роли пространства-времени в ней выступает сама сверхтекучая жидкость. Конечно, аналогия не стопроцентная, но хотя бы некоторые вещи становится возможным изучить в реальном эксперименте.

Например, в 2016 году Джефф Штайнхауэр опубликовал статью, в которой доказал, что гравитационный аналог в сверхтекучем гелии испускает аналог излучения Хокинга!

В новой работе физики разработали более подробную теоретическую модель квантовых вихрей и создали экспериментальную установку, позволяющую получать стабильные макроворонки и исследовать всякие хитрые чернодыровые квантовые эффекты. Они показали, что у вихря существует собственный горизонт событий, не позволяющий звуковым квантам себя покинуть и показали, что вращающаяся черная дыра в действительности закручивает пространств-время вокруг себя.

Ценность новости в основном в том, что теперь у нас есть надежный инструмент для исследования самых настоящих, хоть и не совсем настоящих, черных дыр. И это офигенно круто!

Статья опубликована в Nature 20 марта 2024 года.

Что думаете?

#news
​​Новости науки. Не секрет, что наша галактика, Млечный Путь, сближается с галактикой Андромеды со скоростью 85 км/с и через какие-нибудь четыре миллиарда лет две галактики столкнутся и образуют одного здоровенного галактического мегазорда. Однако оказывается, что первый этап слияния уже происходит: галактики начали обмениваться звездами!

В астрономии есть такое понятие как "высокоскоростные звезды" (high-velocity stars, HVS). Это звезды, которые в результате гравитационного взаимодействия с другими объектами (часще всего со сверхмассивной черной дырой в центре галактики) приобретают скорость в сотни километров в секунду, достаточную для того, чтобы покинуть гравитационный колодец нашей галактики и устремиться в неведомые дали. Такие звезды, покидающие нашу галактику, известны уже достаточно давно. Но тут встает закономерный вопрос: могут ли они прилетать к нам из других галактик?

Чтобы ответить на него, ребята из немецкого Института Астрофизики в Карлсруэ проанализировали астрометрические данные космического телескопа Гайя и обнаружили почти 18 миллионов высокоскоростных звезд. Большая часть из них изначально принадлежала нашей галактике, но небольшая порция звезд, согласно анализу траектории и симуляциям, прилетела из Андромеды. Учитывая разброс модельных параметров, количество звезд-мигрантов может варьироваться от нескольких десятков до нескольких тысяч одновременно. Покинувшие родную галактику сотни миллионов лет назад звезды, ускоряются, "падая" на Млечный Путь. Большая часть этих звезд лишь заскочит в гости ненадолго, снова покинув нашу галактику по гиперболической орбите. Но какая-то малая часть теоретически может удачно провзаимодействовать с каким-нибудь объектом так, что потеряет большую часть кинетической энергии и останется с нами насовсем. Конечно, существует и обратная миграция — из Млечного Пути в Андромеду. И с течением времени, по мере сближения галактик, этот процесс будет лишь интенсифицироваться.

Препринт статьи выложен в arXiv 8 марта 2024 года.

Что думаете?

#news
Новости науки. Физики из Принстона провели первое в мире прямое наблюдение вигнеровского кристалла.

Почти сто лет назад великая голова Юджин Вигнер предсказал, что при определенных условиях возможно формирование кристалла (упорядоченной в пространстве структуры) из одних электронов. В материале, естественно. Для этого нужно, чтобы плотность электроного газа была не очень высокой — чтобы у них было пространство, где разместиться — и очень низкая температура. На практике все это осложнено тем, что такая структура должна быть очень нестабильной и легко разрушаемой различными флуктуациями.

С момента предсказания Вигнера многие физики пытаются эти кристаллы получить и некоторые даже заявляют, что им это удалось. Однако все экспериментальные данные, представленные до сегодняшнего дня, ограничивались косвенными наблюдениями, которые также могли быть вызваны иными явлениями. Хотя весьма вероятно, что и реальные вигнеровские кристаллы там тоже были.

Свежее открытие заключается в том, что вигнеровский кристалл впервые удалось пронаблюдать напрямую. Для этого физики изготовили сверхчистый лист двумерного углерода — графена. Чистота материала нужна, потому что малейшие дефекты структуры тоже вносят дисбаланс в потенциальную вигнеровскую решетку. Затем материал был охлажден до сверхнизкой температуры в 210 мК (чтобы свести к минимуму любые шумы и флуктуации) и электронная плотность постепенно понижалась, пока в один момент электроны замечательным образом не упорядочились в стабильную треугольную решетку с периодом около 30 нм. Там еще магнитное поле нужно, но не суть. Наблюдалось это дело с помощью сканирующего туннельного микроскопа — устройства, способного напрямую визуализировать плотность электронных состояний у поверхности материала.

Играясь с электронной плотностью, ученым также удалось варьировать параметры кристалла в довольно широком диапазоне.

В общем, поздравляем старика Вигнера, он был прав. Ну и принстонцев тоже, само собой. Как и вообще всех ребят!

Зачем все это нужно? Да затем, что это просто офигенно!

Статья опубликована в Nature 10 апреля 2024 года. Бесплатный текст имеется в arXiv тыц.

Что думаете?

#news
Новости науки. Мужики из немецкого Марбурга обнаружили первую фрактальную молекулу.

Фрактальные структуры встречаются в природе повсеместно. Сложно даже сказать, где их нет, но одной из таких областей доселе была молекулярная химия — молекулы поразительным образом не любят собираться в фракталы.

Ну, или не любили. В новом исследовании химики из Института земной биологии имени Макса Планка обнаружили молекулу энзима, вырабатываемую цианобактерией Synechococcus elongatus, которая умеет достаточно легко собираться в треугольник Серпинского.

С помощью электронной микроскопии ученые даже выяснили причину таких свойств. Дело в том, что молекулы обычно обладают довольно высокой симметрией, предусматривающей образование лишь высокоупорядоченных структур. Новый же объект слегка нарушает это правило — его структура зависит от положения молекулы-прекурсора в макромолекуле. Эти небольшие регулярные вариации и позволяют ей образовывать фрактал.

Интересно, что чтобы добиться таких свойств бактерии особо и стараться-то не пришлось, но других фрактальных молекул, тем не менее, до сих пор найдено не было. Ученые теперь задаются вопросом, нужны ли бактерии зачем-то эти фракталы или это просто совпадение. Пока кажется, что последнее. Ну и интересно будет посмотреть на зарождение новой области науки — фрактальной химии. Хотя бы потому что это красиво!

Работа опубликована в Nature 10 апреля 2024 года.

Что думаете?

#news
This media is not supported in your browser
VIEW IN TELEGRAM
Новости науки. Буквально со дня на день (до сентября сего года) ученые прогнозируют очень редкое и моднейшее событие, например, а именно — вспышку новой звезды T CrB всего в 3000 световых лет от нас в созвездии Северной Короны. Подобные события в такой близости, что их можно наблюдать даже без специального оборудования, происходят лишь раз в 80 лет. Так что не пропустите!

Напомню, что вспышка новой происходит, когда белый карлик аккумулирует на себя водород своей звезды-компаньона (в данном случае это красный гигант), который эпично взрывается термоядерным пламенем при достижении некоторой критической массы. Затем таймер сбрасывается, а процесс аккумуляции начинается заново. Такая система также называется повторной новой.

Во время вспышки звездная величина системы повысится с +10 до +2, что на несколько дней сделает ее видимой невооруженным взглядом. На данный момент в нашей галактике обнаружено всего пять повторных новых такого типа.

Что думаете?

#news