Новости науки. Австрийские грибные ученые из Университета Иоганна Кеплера додумались использовать материал из шкурки древесного гриба Ganoderma lucidum в качестве экологичной и биоразлагаемой подложки для электронных компонентов.
Подложки это наименьшие по стоимости, но наибольшие по объему части электронных устройств. Обычно их производят из злых пластиков, которые сложно перерабатывать, и они просто выкидываются на свалки. А ведь человечество каждый год производит примерно 50 миллионов тонн электронного хлама, так что проблема, как говорится, имеет место быть.
Вот и австрийские ученые, огорчившись этому факту, вспомнили про свои запасы грибов, в частности, про прекрасный Ganoderma lucidum, растущий на европейских и азиатских лиственных деревьях. Волею эволюции гриб обладает очень прочной шкуркой из мицелия, которую он развил с целью защиты от бактерий и других грибов, но с радостью делится ей и с исследователями. Как оказалось, шкурка почти не уступает по свойствам промышленным пластикам, использующимся в подложках, и выдерживает температуры до 200°C, хотя и обладает чуть большей проводимостью. Но самое главное её преимущество, конечно, в том, что она абсолютно экофрендли.
Технология пока не используется ни в каких промышленных изделиях, но исследователи выражают надежду о её скором применении для электроники, которая не требует долгого срока службы, например в NFC-метках.
Исследование опубликовано в Science Advances 11 ноября 2022 года.
#news
Подложки это наименьшие по стоимости, но наибольшие по объему части электронных устройств. Обычно их производят из злых пластиков, которые сложно перерабатывать, и они просто выкидываются на свалки. А ведь человечество каждый год производит примерно 50 миллионов тонн электронного хлама, так что проблема, как говорится, имеет место быть.
Вот и австрийские ученые, огорчившись этому факту, вспомнили про свои запасы грибов, в частности, про прекрасный Ganoderma lucidum, растущий на европейских и азиатских лиственных деревьях. Волею эволюции гриб обладает очень прочной шкуркой из мицелия, которую он развил с целью защиты от бактерий и других грибов, но с радостью делится ей и с исследователями. Как оказалось, шкурка почти не уступает по свойствам промышленным пластикам, использующимся в подложках, и выдерживает температуры до 200°C, хотя и обладает чуть большей проводимостью. Но самое главное её преимущество, конечно, в том, что она абсолютно экофрендли.
Технология пока не используется ни в каких промышленных изделиях, но исследователи выражают надежду о её скором применении для электроники, которая не требует долгого срока службы, например в NFC-метках.
Исследование опубликовано в Science Advances 11 ноября 2022 года.
#news
История науки. Нильс Бор рассказывает о каком-то малоизвестном физическом эксперименте в ходе лекции, Айова, 1950 год.
#scihistory
#scihistory
Цитата. "В последние годы я заметил, что многие подающие надежды ученые гораздо больше, чем я когда-либо, беспокоятся о том, что может принести будущее: как поступить в лучший университет, работать с самыми громкими именами, найти лучшую позицию постдока и обеспечить себе идеальную должность в университете. Моя собственная психологическая склонность, в той мере, в какой она повлияла на любые профессиональные решения, состоит в том, чтобы идти по пути, сулящему удовольствие, не заглядывая слишком далеко вперед. Возможно, из-за моего квакерского воспитания я всегда ценил личное участие в трудной задаче, а не призывы к знатности или авторитету; Мне нравится пересматривать проблему с иных точек зрения. В конечном счете, я считаю, что в важных вопросах мы в основном самоучки, но с учётом сильного влияния кооперации с другими людьми." (с) Джозеф Тейлор младший
#цитата
#цитата
This media is not supported in your browser
VIEW IN TELEGRAM
Явление. Интересное поведение жидкости продемонстрировали ученые из EPFL. Микрофлюидное устройство состоит из двух канальчиков, по которым навстречу друг другу подаётся подкрашенная вода. При определённом значении скорости потока (характеризующейся числом Рейнольдса) возникают устойчивые колебания, частота которых с ростом числа Рейнольдса увеличивается, а при определённом критическом значении процесс становится неустойчивым. Красиво же? Полный ролик по ссылке - тыц.
#effect
#effect
This media is not supported in your browser
VIEW IN TELEGRAM
APOD. Пацаны подготовили наглядную анимацию траектории недавно запущенной миссии Artemis 1. В течение следующих пары недель аппарат совершит несколько оборотов по ретроградной орбите вокруг Луны, а затем вернётся на Землю. Задачей миссии является тестирование корабля Orion, предназначенного для будущих пилотируемых полётов.
#apod
#apod
История науки. До того, как компьютеры прочно вошли в нашу жизнь, физические и инженерные расчеты приходилось проводить по старинке - карандашом на бумаге или мелом на доске. В частности, так расчитывались орбиты первых спутников. На фото неопознанные ученые из калифорнийской Systems Labs пытаются сделать так, чтобы какой-то спутник не упал им обратно на голову. Фото, конечно, постановочное. Фотосессия проводилась для журнала Life в 1957 году, за несколько лет до основания NASA. Да и написанные уравнения весьма просты и не относятся к каким-то осмысленным расчетам. Тем не менее, можно видеть, что работа требовала не только ясного ума, но и недюжинной физической подготовки.
#scihistory
#scihistory
Новости науки. Многослойные двумерные материалы уже давненько являются одним из основных направлений исследования в физике твёрдого тела. Популярный пример - два листочка графена, положенные друг на друга. Взаимодействие между электронами в листах часто наделяет их уникальными свойствами, которые в одном листе не наблюдаются. Если же листы ещё и повернуть друг относительно друга на небольшой угол, то станет совсем весело - возникнет муаровый узор (знакомый многим по оптическим иллюзиям), который может ещё сильнее модифицировать свойства системы.
Физикам из Техасского университета в Остине удалось обнаружить новый вид квазичастиц, образуемых электронами как раз в таких муаровых системах. Удивительно, но найдены они не в графене, а в двуслойном материале из листа диселенида вольфрама, положенного на лист дисульфида вольфрама с небольшим углом между ними. В этом случае получается своеобразная муаровая квазирешетка (один период большого муарова узора), содержащая аж 3903 атома.
Новая квазичастица относится к классу экситонов, которые сами по себе известны очень давно, в основном в физике полупроводников. Возникают они, когда свободный электрон сцепляется со свободной "дыркой" (электронной вакансией), и получившаяся частица может долгое время жить как связанная система. Отличительной особенностью нового экситона является то, что его характеристики определяются именно параметрами муарового узора, например, его размер практически идеально совпадает с периодом узора.
Открытие это интересно прежде всего тем, что такие частицы вообще могут образовываться. Это прекрасная иллюстрация того, насколько сложные системы мы уже умеем конструировать на атомарных масштабах. Но, по словам ученых, экситону могут найтись и другие применения, например в оптических сенсорах нового поколения или опто-электронных устройствах.
Кстати, обнаружили частицу сначала теоретически и из первых принципов (то есть, используя голую теорию), а уже потом подтвердили экспериментально.
Статья опубликована в Nature 31 августа 2022 года.
#news
Физикам из Техасского университета в Остине удалось обнаружить новый вид квазичастиц, образуемых электронами как раз в таких муаровых системах. Удивительно, но найдены они не в графене, а в двуслойном материале из листа диселенида вольфрама, положенного на лист дисульфида вольфрама с небольшим углом между ними. В этом случае получается своеобразная муаровая квазирешетка (один период большого муарова узора), содержащая аж 3903 атома.
Новая квазичастица относится к классу экситонов, которые сами по себе известны очень давно, в основном в физике полупроводников. Возникают они, когда свободный электрон сцепляется со свободной "дыркой" (электронной вакансией), и получившаяся частица может долгое время жить как связанная система. Отличительной особенностью нового экситона является то, что его характеристики определяются именно параметрами муарового узора, например, его размер практически идеально совпадает с периодом узора.
Открытие это интересно прежде всего тем, что такие частицы вообще могут образовываться. Это прекрасная иллюстрация того, насколько сложные системы мы уже умеем конструировать на атомарных масштабах. Но, по словам ученых, экситону могут найтись и другие применения, например в оптических сенсорах нового поколения или опто-электронных устройствах.
Кстати, обнаружили частицу сначала теоретически и из первых принципов (то есть, используя голую теорию), а уже потом подтвердили экспериментально.
Статья опубликована в Nature 31 августа 2022 года.
#news
Цитата. "Я пытался разработать разновидность теории, в которой электронные поля, так же как и электромагнитные поля, являются переносчиками ядерных сил. Эта идея восходит к известной теории Гейзенберга об атомном ядре. Его статья была опубликована в 1932 году. Я попытался развить его идею, подробно рассмотрев поле электрона. Но, конечно, я столкнулся с большим количеством трудностей, связанных со спином, статистикой, сохранением энергии, импульсом и так далее. Но затем, в 1933 году, очень хорошо подошла знаменитая статья Ферми о бета-распаде с привлечением нейтрино.
Я стал задумываться над вопросом о ядерных силах в связи с процессом бета-распада. И сразу заметил, что процесс бета-распада очень медленный, так что электронно-нейтринное поле слишком слабое для сильного ядерного взаимодействия. Но я не пытался делать количественные выводы. Потом я увидел в Nature две статьи Тамма и Иваненко, в которых они привели формулу для ядерного взаимодействия, создаваемого полем электронных нейтрино. Как я и ожидал, ядерное взаимодействие с точки зрения процесса бета-распада оказалось слишком малым. Так что я был снова вдохновлён подумать о чём-то совершенно отличном от бета-распада. Я пытался разработать теорию электронного поля, которая также учитывала бы ядерные силы. Я снова столкнулся с множеством неприятностей, но в то время Нишина предположил, что можно попробовать рассмотреть электроны, подчиняющиеся статистике Бозе. В то время я не смог ухватить его мысль, потому что если есть электрон другого типа, с другой статистикой, то его можно было бы сразу обнаружить с помощью ядерного процесса.
Постепенно мои представления начали обретать форму, и где-то в сентябре 1931 г. мне стало ясно, что если принять массу этой новой частицы достаточно большой, то трудностей с её ненаблюдаемостью не возникнет. Я тут же взялся вычислять, проверять соотношение между масштабом взаимодействия и массой этой новой частицы; так что вскоре моя первая статья была почти готова" (с) Хидеки Юкава об открытии мезонов, AIP Oral History, 1962
#цитата
Я стал задумываться над вопросом о ядерных силах в связи с процессом бета-распада. И сразу заметил, что процесс бета-распада очень медленный, так что электронно-нейтринное поле слишком слабое для сильного ядерного взаимодействия. Но я не пытался делать количественные выводы. Потом я увидел в Nature две статьи Тамма и Иваненко, в которых они привели формулу для ядерного взаимодействия, создаваемого полем электронных нейтрино. Как я и ожидал, ядерное взаимодействие с точки зрения процесса бета-распада оказалось слишком малым. Так что я был снова вдохновлён подумать о чём-то совершенно отличном от бета-распада. Я пытался разработать теорию электронного поля, которая также учитывала бы ядерные силы. Я снова столкнулся с множеством неприятностей, но в то время Нишина предположил, что можно попробовать рассмотреть электроны, подчиняющиеся статистике Бозе. В то время я не смог ухватить его мысль, потому что если есть электрон другого типа, с другой статистикой, то его можно было бы сразу обнаружить с помощью ядерного процесса.
Постепенно мои представления начали обретать форму, и где-то в сентябре 1931 г. мне стало ясно, что если принять массу этой новой частицы достаточно большой, то трудностей с её ненаблюдаемостью не возникнет. Я тут же взялся вычислять, проверять соотношение между масштабом взаимодействия и массой этой новой частицы; так что вскоре моя первая статья была почти готова" (с) Хидеки Юкава об открытии мезонов, AIP Oral History, 1962
#цитата
This media is not supported in your browser
VIEW IN TELEGRAM
Явление. Ещё немного парамагнитного кислорода, аналогично предыдущему посту на эту тему, но в другой конфигурации. Жидкий кислород парамагнитен и притягивается к постоянному магниту. Однако, покинуть его поверхность капля оказывается уже не в состоянии, оказываясь в своеобразной магнитной ловушке. Полный ролик по ссылке - тыц.
#effect
#effect
APOD. Ребята подготовили интересную карту вселенной, от нашей галактики Млечный Путь (снизу) до самых дальних наблюдаемых рубежей видимой вселенной. Каждая точка на карте отмечает реально существующую галактику (всего их обозначено около 200 000). Полная карта, конечно, была бы сферической. Нам показывают лишь тоненький сектор этой сферы. Эффекты красного смещения тоже присутствуют. Полная карта в галактическом разрешении по ссылке - тыц.
#apod
#apod
Изображение. Исследование Антарктики непростое занятие. Сильные морозы, отсутствие инфраструктуры и удалённость от всего делают даже просто жизнь там сложной, не говоря уже о научной работе. Но труд ученых значительно облегчают дроны, активное развитие которых произошло в последние годы. Даже совсем дешевый дрон способен доставить важный научный прибор туда, куда раньше человеку доступа не было. С их помощью ученые могут изучать ледники и удалённые антарктические озёра, картографировать труднодоступные острова или исследовать стойбища пингвинов, не нарушая их покой. К тому же, дроны не производят загрязнений, чего не скажешь о самолётах или вертолётах, которые использовались для этих целей ранее.
#scimage
#scimage
Новости науки. Сразу два новых минерала обнаружили ученые из канадского Альбертского Университета в образце железного метеорита Эль-Али, отдыхающего на песочке где-то в Сомали.
От 15-тонного метеорита, обнаруженного пару лет назад, ученым удалось заполучить в руки 70-граммовый образец, в срезе которого было найдено сразу два ранее не встречавшихся в природе минерала. Оба вещества представляют собой сложные соединения железа и фосфора и получили имена эльалиит (в честь метеорита) и элкинстантонит (в честь Линди Элкинс-Тантон, профессора наук земных и небесных, очень уважаемой одним из первооткрывателей).
Стоит заметить, что вещества эти рание не встречались лишь в естественной природе, в лаборатории их уже синтезировали аж в восьмидесятых годах (мало до чего не дотянулись загребущие ручонки синтезаторов). Но, тем не менее, открытие важное, ведь для образования минералов нужны определённые условия, а значит само наличие вещества в камне может кое-что поведать о его образовании и развитии, то есть, внести вклад в наше понимание эволюции Солнечной системы. Не исключено, что при более подробном рассмотрении в метеорите обнаружится и ещё кое-что интересное.
Статьи пока нет, но есть пресс-релиз университета и доклад на конференции.
#news
От 15-тонного метеорита, обнаруженного пару лет назад, ученым удалось заполучить в руки 70-граммовый образец, в срезе которого было найдено сразу два ранее не встречавшихся в природе минерала. Оба вещества представляют собой сложные соединения железа и фосфора и получили имена эльалиит (в честь метеорита) и элкинстантонит (в честь Линди Элкинс-Тантон, профессора наук земных и небесных, очень уважаемой одним из первооткрывателей).
Стоит заметить, что вещества эти рание не встречались лишь в естественной природе, в лаборатории их уже синтезировали аж в восьмидесятых годах (мало до чего не дотянулись загребущие ручонки синтезаторов). Но, тем не менее, открытие важное, ведь для образования минералов нужны определённые условия, а значит само наличие вещества в камне может кое-что поведать о его образовании и развитии, то есть, внести вклад в наше понимание эволюции Солнечной системы. Не исключено, что при более подробном рассмотрении в метеорите обнаружится и ещё кое-что интересное.
Статьи пока нет, но есть пресс-релиз университета и доклад на конференции.
#news
Цитата. "…Разве Белл не доказал, что скрытые переменные неверны? Нет, не доказал, хотя это очень распространенное заблуждение, к сожалению, даже среди физиков. Белл доказал, что теория скрытых переменных, которая (а) является локальной и (б) удовлетворяет пространному допущению, называемому "статистической независимостью", должна подчиняться неравенству, которое теперь называется неравенством Белла.
Если статистическая независимость нарушена, это означает, что то, что делает квантовая частица, зависит от того, что вы измеряете. Именно так работает супердетерминизм: то, что делает квантовая частица, зависит от того, что вы измеряете.
Беллу не нравился вывод, который следовал из его собственной математики. Как и многие до и после него, Белл хотел доказать, что Эйнштейн ошибался. Если вы помните, Эйнштейн говорил, что квантовая механика не может быть полной, потому что она имеет "пугающее дальнодействие" (spooky action at a distance). Вот почему Эйнштейн считал квантовую механику просто усредненным описанием теории скрытых переменных. Белл, напротив, хотел, чтобы физики приняли это пугающее дальнодействие. Так что ему нужно было каким-то образом убедить их, что это странное дополнительное предположение, статистическая независимость, имеет смысл. В интервью BBC 1983 года он сказал следующее:
«Есть способ избежать выводов о сверхсветовых скоростях и жутком дальнодействии. Но это предполагает абсолютный детерминизм во Вселенной, полное отсутствие свободы воли. Если мы предположим, что мир сверхдетерминирован, и не только неживая природа работает по закулисному часовому механизму, но и наше поведение, включая нашу веру в то, что мы свободны выбирать один эксперимент, а не другой, абсолютно предопределено, включая "решение" экспериментатора провести один набор измерений, а не другой, то трудность исчезает".
Отсюда и произошло слово "супердетерминизм". Белл назвал нарушение статистической независимости "супердетерминизмом" и заявил, что это потребует отказа от свободы воли. Он утверждал, что есть только два варианта: либо принять жуткое дальнодействие и сохранить свободу воли, что означало бы, что Белл был прав, либо отвергнуть жуткое дальнодействие, но отказаться от свободы воли, что означало бы, что Эйнштейн был прав. Белл победил. Эйнштейн проиграл." (с) Сабина Хоссенфельдер
#цитата
Если статистическая независимость нарушена, это означает, что то, что делает квантовая частица, зависит от того, что вы измеряете. Именно так работает супердетерминизм: то, что делает квантовая частица, зависит от того, что вы измеряете.
Беллу не нравился вывод, который следовал из его собственной математики. Как и многие до и после него, Белл хотел доказать, что Эйнштейн ошибался. Если вы помните, Эйнштейн говорил, что квантовая механика не может быть полной, потому что она имеет "пугающее дальнодействие" (spooky action at a distance). Вот почему Эйнштейн считал квантовую механику просто усредненным описанием теории скрытых переменных. Белл, напротив, хотел, чтобы физики приняли это пугающее дальнодействие. Так что ему нужно было каким-то образом убедить их, что это странное дополнительное предположение, статистическая независимость, имеет смысл. В интервью BBC 1983 года он сказал следующее:
«Есть способ избежать выводов о сверхсветовых скоростях и жутком дальнодействии. Но это предполагает абсолютный детерминизм во Вселенной, полное отсутствие свободы воли. Если мы предположим, что мир сверхдетерминирован, и не только неживая природа работает по закулисному часовому механизму, но и наше поведение, включая нашу веру в то, что мы свободны выбирать один эксперимент, а не другой, абсолютно предопределено, включая "решение" экспериментатора провести один набор измерений, а не другой, то трудность исчезает".
Отсюда и произошло слово "супердетерминизм". Белл назвал нарушение статистической независимости "супердетерминизмом" и заявил, что это потребует отказа от свободы воли. Он утверждал, что есть только два варианта: либо принять жуткое дальнодействие и сохранить свободу воли, что означало бы, что Белл был прав, либо отвергнуть жуткое дальнодействие, но отказаться от свободы воли, что означало бы, что Эйнштейн был прав. Белл победил. Эйнштейн проиграл." (с) Сабина Хоссенфельдер
#цитата
APOD. Фотография с биологическим вайбом. Правда же в первом приближении похоже на клетку или вирус какой-нибудь. На самом деле это, конечно, забавно обработанная фотография Солнца. Оригинальная фотография сделана через красный фильтр, переведена в оттенки серого, а затем инвертирована. Получился темноватый шарик Солнца в заполненной светом вселенной с черными звёздами. Разные солнечные структуры тоже выделяются светлыми нитями.
#apod
#apod
Новости науки. Физики из MIT, Калтеха и Гарварда создали червоточину между двумя черными дырами и успешно телепортировали через неё информацию.
Звучит как новость из далёкого будущего, но тем не менее, всё так и было, хоть и в квантовом симуляторе. Квантовые компьютеры, хоть они и обладают пока весьма скромными размерами и возможностями, уже позволяют симулировать квантовые системы из нескольких десятков кубит и их эволюцию. Фактически, мы на время проведения эксперимента создаём маленькую, но по-своему полноценную вселенную с собственными законами.
В "классической" общей теории относительности червоточины (две удалённых, но связанных области пространства-времени) возможны, но информацию через них передавать запрещено. Это было обнаружено ещё самим Эйнштейном и оставалось неизменным до 2013 года, когда Хуан Малдасена и Леонард Сасскинд, добавив квантовую механику, смогли изменить ситуацию. Фактически, их открытие заключалось в том, что червоточины общей теории относительности и запутанные частицы в квантовой механике это одно и то же явление, объяснённое разными способами. Они показали, что между двумя запутанными квантовыми частицами (или же двумя запутанными квантовыми системами из многих частиц), разнесённых на какое угодно расстояние, неизбежно создаётся червоточина. И наоборот, концы червоточины неизбежно должны быть квантово запутаны.
Для своего эксперимента ученые воспользовались гугловским квантовым процессором Sycamore и создали на нём небольшую квантовую систему из десяти кубит, которая ведёт так, как вела бы реальная (но настолько малюсенькая) червоточина, в соответствии с сегодняшними теориями. Симулировать такую систему на таком маленьком процессоре, вообще говоря, совсем не тривиальная задача, ведь стандартные модели содержат сотни параметров, а значит для их симуляции нужно сопоставимое количество кубит. Ученые использовали методы машинного обучения, чтобы редуцировать все возможные конфигурации квантовой системы, и выбрали ту, которая содержит наименьшее число параметров, но всё ещё ведёт себя как червоточина.
Дальше дело оставалось только за экспериментом/симуляцией. Запустив квантовый симулятор, физики подали кусочек квантовой информации на один конец червоточины. Ошеломительного успеха никто не ожидал, ведь прогресс в науке обычно происходит постепенно, и все думали, что попробуют, а когда ничего не получится, будут думать, в каком направлении двигаться дальше. Тем не менее, симуляция повела себя таким образом, что кубит успешно прошел через червоточину и пересобрался на другом её конце.
Статья с открытием опубликована в Nature 30 ноября 2022 года, а качественный ролик с более подробным описанием доступен вот тут - тыц. Учитывая, что прогресс в области квантовых компьютеров не стоит на месте, и их размер (количество кубит) постоянно растёт, можно уже помечтать, какие возможности откроются перед симуляторами вселенных в будущем.
#news
Звучит как новость из далёкого будущего, но тем не менее, всё так и было, хоть и в квантовом симуляторе. Квантовые компьютеры, хоть они и обладают пока весьма скромными размерами и возможностями, уже позволяют симулировать квантовые системы из нескольких десятков кубит и их эволюцию. Фактически, мы на время проведения эксперимента создаём маленькую, но по-своему полноценную вселенную с собственными законами.
В "классической" общей теории относительности червоточины (две удалённых, но связанных области пространства-времени) возможны, но информацию через них передавать запрещено. Это было обнаружено ещё самим Эйнштейном и оставалось неизменным до 2013 года, когда Хуан Малдасена и Леонард Сасскинд, добавив квантовую механику, смогли изменить ситуацию. Фактически, их открытие заключалось в том, что червоточины общей теории относительности и запутанные частицы в квантовой механике это одно и то же явление, объяснённое разными способами. Они показали, что между двумя запутанными квантовыми частицами (или же двумя запутанными квантовыми системами из многих частиц), разнесённых на какое угодно расстояние, неизбежно создаётся червоточина. И наоборот, концы червоточины неизбежно должны быть квантово запутаны.
Для своего эксперимента ученые воспользовались гугловским квантовым процессором Sycamore и создали на нём небольшую квантовую систему из десяти кубит, которая ведёт так, как вела бы реальная (но настолько малюсенькая) червоточина, в соответствии с сегодняшними теориями. Симулировать такую систему на таком маленьком процессоре, вообще говоря, совсем не тривиальная задача, ведь стандартные модели содержат сотни параметров, а значит для их симуляции нужно сопоставимое количество кубит. Ученые использовали методы машинного обучения, чтобы редуцировать все возможные конфигурации квантовой системы, и выбрали ту, которая содержит наименьшее число параметров, но всё ещё ведёт себя как червоточина.
Дальше дело оставалось только за экспериментом/симуляцией. Запустив квантовый симулятор, физики подали кусочек квантовой информации на один конец червоточины. Ошеломительного успеха никто не ожидал, ведь прогресс в науке обычно происходит постепенно, и все думали, что попробуют, а когда ничего не получится, будут думать, в каком направлении двигаться дальше. Тем не менее, симуляция повела себя таким образом, что кубит успешно прошел через червоточину и пересобрался на другом её конце.
Статья с открытием опубликована в Nature 30 ноября 2022 года, а качественный ролик с более подробным описанием доступен вот тут - тыц. Учитывая, что прогресс в области квантовых компьютеров не стоит на месте, и их размер (количество кубит) постоянно растёт, можно уже помечтать, какие возможности откроются перед симуляторами вселенных в будущем.
#news
Изображение. Подводный палеонтолог (ого, как бывает!) изучает череп гигантского лемура, когда-то жившего в ныне затопленной пещере на тридцатиметровой глубине под Мадагаскаром. Когда-то Мадагаскар служил домом для большого разнообразия уникальных видов, включая гигантских лемуров, рептилий и птиц. Однако, несколько веков назад разнообразие жизни на острове по не до конца понятным причинам значительно сократилось (казалось бы, при чем тут люди). Чтобы собирать крупицы истины, ученым приходится проходить курсы подводного плавания, натягивать громоздкое оборудование и погружаться в хорошо сохранившиеся затопленные пещерные гробницы.
#scimage
#scimage
История науки. Популярный физик и большой балагур Стивен Хокинг издевается над малоизвестным актёром, предположительно 2003 год. Хокинг вообще любил всячески наезжать на людей, которые ему не нравились.
#scihistory
#scihistory