This media is not supported in your browser
VIEW IN TELEGRAM
Новости науки. Исследователям из Национального института стандартов и технологий (NIST) удалось передать видеосигнал, используя ридберговские атомы в качестве приёмника.
Если накачивать атом энергией, его электроны будут переходить на более высокие энергетические уровни, а размер атома, соответственно, увеличиваться (радиус атома пропорционален квадрату главного квантового числа n его внешних электронов). Таким образом можно раскачать атомы до весьма внушительных n порядка 1000 и радиусов в без малого десятые доли миллиметра. Эти сверхвозбуждённые состояния называются ридберговскими атомами.
Ридберговские атомы крайне чувствительны к внешним электромагнитным полям и могут быть использованы в качестве детекторов радиосигнала. С помощью лазерной накачки ученые создали ридберговские атомы рубидия в стеклянной ячейке и получили с их помощью цветной аналоговый видеосигнал на СВЧ-частоте 17 ГГц. Демонстрация этого процесса показана на видео.
Пока что исследование доступно лишь в arXiv - тыц.
#news
Если накачивать атом энергией, его электроны будут переходить на более высокие энергетические уровни, а размер атома, соответственно, увеличиваться (радиус атома пропорционален квадрату главного квантового числа n его внешних электронов). Таким образом можно раскачать атомы до весьма внушительных n порядка 1000 и радиусов в без малого десятые доли миллиметра. Эти сверхвозбуждённые состояния называются ридберговскими атомами.
Ридберговские атомы крайне чувствительны к внешним электромагнитным полям и могут быть использованы в качестве детекторов радиосигнала. С помощью лазерной накачки ученые создали ридберговские атомы рубидия в стеклянной ячейке и получили с их помощью цветной аналоговый видеосигнал на СВЧ-частоте 17 ГГц. Демонстрация этого процесса показана на видео.
Пока что исследование доступно лишь в arXiv - тыц.
#news
Кристаллы. Мексиканская Пещера Кристаллов выглядит, как что-то не из этого мира. Расположенная на глубине 300 метров пещера практически полностью заполнена гигантскими кристаллами селенита (дигидрат сульфата кальция). Уникальные структуры росли в течение сотен тысяч лет, осаждаясь из богатых минералами подземных вод, подогретых магмой. Самый крупный кристалл имеет 11 метров в длину и весит 55 тонн. Чуть выше, на глубине 120 метров, находится Пещера Мечей (на одной из фотографий), заполненная схожими образованиями, но меньшего размера. Считается, что в ней подходящие условия для роста кристаллов поддерживались меньшее время. В пещерах сохраняется высокая температура в 58 градусов и практически стопроцентная влажность, что сильно затрудняет их исследование.
#crystal
#crystal
Изображение. В ожидании результатов Run 3 Большого адронного коллайдера насладимся парой фотографий самого сложного технического устройства в мире.
1) Детектор мюонов эксперимента CMS (Compact Muon Solenoid) во время обслуживания.
2) 86-метровый линейный ускоритель Linac4, производящий первичные протоны для коллайдера.
3) Прибор VELO (vertex locator) для регистрации короткоживущих частиц, расположенный вблизи пучка.
4)Подопытный инженегр в перекрестии детектора ALICE, регистрирующего результат столкновения тяжелых ионов.
#scimage
1) Детектор мюонов эксперимента CMS (Compact Muon Solenoid) во время обслуживания.
2) 86-метровый линейный ускоритель Linac4, производящий первичные протоны для коллайдера.
3) Прибор VELO (vertex locator) для регистрации короткоживущих частиц, расположенный вблизи пучка.
4)
#scimage
This media is not supported in your browser
VIEW IN TELEGRAM
APOD. Колоссальное солнечное цунами, порождённое взрывом солнечного пятна размером с Землю в 2006 году. Такие ударные волны называются волнами Мортона и распространяются в солнечной короне со скоростью порядка миллиона километров в час, огибая всю солнечную поверхность за считанные минуты. Так как они представляют собой излучение от разогретого водорода, лучше всего их видно на длине волны H-альфа (656,28 нм), на которой и получены эти данные. Снимок сделан американским телескопом Optical Solar Patrol Network.
#apod
#apod
Новости науки. Мы уже поговорили практически обо всех аллотропных модификациях углерода, от графенов и графинов до нанотрубок и фуллеренов. Но героя сегодняшнего поста до настоящей работы в природе не существовало (по крайней мере в нашей части галактики). Речь идёт о наноремнях Мёбиуса.
Наноремни представляют собой просто узенькую полоску графена (или разрезанную нанотрубку). В них в принципе нет ничего особенного, и они были получены ещё в 2017 году. Но добавление топологии Мёбиуса всё существенно меняет.
Известный математический объект лента Мёбиуса характеризуется наличием только одной стороны, что достигается за счет перекручивания ленты на 180 градусов относительно самой себя. Объект очень интересен с точки зрения топологии и обладает рядом уникальных свойств. Возможность построения таких структур из углерода была предсказана несколько лет назад, но синтез не удавался из-за высоких внутренних напряжений, которыми должны обладать эти объекты. Но молодцы-японцы сумели преодолеть все технические трудности и сочинили сложную реакцию (а точнее серию из 14 химических реакций), которая позволяет синтезировать односторонние ремни и изолировать их для изучения.
Авторы признаются, что понятия не имеют, какую службу углеродные наноремни Мёбиуса могут сослужить человечеству, но саму возможность их получения мы уже находим невероятно классной.
Работа опубликована в Nature Synthesis 19 мая 2022 года.
#news
Наноремни представляют собой просто узенькую полоску графена (или разрезанную нанотрубку). В них в принципе нет ничего особенного, и они были получены ещё в 2017 году. Но добавление топологии Мёбиуса всё существенно меняет.
Известный математический объект лента Мёбиуса характеризуется наличием только одной стороны, что достигается за счет перекручивания ленты на 180 градусов относительно самой себя. Объект очень интересен с точки зрения топологии и обладает рядом уникальных свойств. Возможность построения таких структур из углерода была предсказана несколько лет назад, но синтез не удавался из-за высоких внутренних напряжений, которыми должны обладать эти объекты. Но молодцы-японцы сумели преодолеть все технические трудности и сочинили сложную реакцию (а точнее серию из 14 химических реакций), которая позволяет синтезировать односторонние ремни и изолировать их для изучения.
Авторы признаются, что понятия не имеют, какую службу углеродные наноремни Мёбиуса могут сослужить человечеству, но саму возможность их получения мы уже находим невероятно классной.
Работа опубликована в Nature Synthesis 19 мая 2022 года.
#news
История науки. Американский физик Джозеф Вебер колдует над первым в мире детектором, призванным обнаружить гравитационные волны, предположительно 1968 год.
Гравитационные волны были предсказаны общей теорией относительности и являются колебаниями самого пространства-времени. Детектор Вебера представлял собой свободно подвешенный цилиндр весом в несколько тонн, колебания которого должны были возвестить о прохождении гравитационных волн. Конечно, у него ничего не вышло. Это сейчас мы знаем, что для обнаружения эффекта нужны километровые интерферометры с на десятки порядков большей чувствительностью. Но в те годы ещё даже само существование гравитационных волн было под вопросом.
Интересно, что сам Вебер волны всё-таки "обнаружил". Гравитационные волны Вебера стали результатом ошибки в программе обработки данных, и десятки лабораторий по всему миру доказали их ложность. Но сам Вебер до конца своих дней верил, что волны он всё-таки задетектировал, и не оставлял попыток отстоять свои результаты.
#scihistory
Гравитационные волны были предсказаны общей теорией относительности и являются колебаниями самого пространства-времени. Детектор Вебера представлял собой свободно подвешенный цилиндр весом в несколько тонн, колебания которого должны были возвестить о прохождении гравитационных волн. Конечно, у него ничего не вышло. Это сейчас мы знаем, что для обнаружения эффекта нужны километровые интерферометры с на десятки порядков большей чувствительностью. Но в те годы ещё даже само существование гравитационных волн было под вопросом.
Интересно, что сам Вебер волны всё-таки "обнаружил". Гравитационные волны Вебера стали результатом ошибки в программе обработки данных, и десятки лабораторий по всему миру доказали их ложность. Но сам Вебер до конца своих дней верил, что волны он всё-таки задетектировал, и не оставлял попыток отстоять свои результаты.
#scihistory
This media is not supported in your browser
VIEW IN TELEGRAM
Явление. Многие не догадываются, но кислород, составляющий столь важную часть нашего существования, обладает довольно выраженными магнитными свойствами. Правда проявляются они только в жидком состоянии (для проявления эффекта в газообразном кислороде необходимы колоссальные поля). Жидкий кислород представляет собой приятную для глаза голубоватую жидкость. В опыте на видео полюса обычного постоянного магнита сначала охлаждаются жидким азотом, чтобы кислород не слишком быстро испарялся, и не возникал эффект Лейденфроста. При этом видно, что сам азот совершенно никак не реагирует на магнитное поле. Затем катушки поливают кислородом, и он, притягиваясь к ним, образует устойчивый мостик между полюсами, постепенно испаряясь. Происходит это благодаря наличию у него парамагнитных свойств - каждая молекула кислорода является маленьким магнитиком, реагирующим на источник внешнего поля.
#effect
#effect
Изображение. Одинокий скиталец, бредущий через нанопустыню. На этой микрофотографии, полученной под скользящим углом с помощью сканирующего электронного микроскопа, роль пустынного ландшафта выполняет наноплёнка из вольфрама, отслоившаяся от подложки из-за недостаточной адгезии. Путник же - просто случайный осколок (как и все мы), выброшенный в необъятные пространства непознанного при подготовке образца. Изображение получено в Федеральной политехнической школе Лозанны. Цвета, само-собой, искусственные.
#scimage
#scimage
Научная статья. В 1999 году группа английских нейробиологов выяснила, что мозг лондонских таксистов претерпевает существенные структурные изменения вследствие их профессиональной деятельности.
В испытании приняли участие 16 лондонских таксистов с многолетним стажем. Проведённые МРТ сканы показали, что задний гиппокамп водителей такси существенно больше, чем у контрольной группы. При этом объём гиппокампа положительно коррелирует с водительским стажем. Интересно, что изменения затрагивают только правый гиппокампа, левый остаётся без изменений.
Напомним, что по современным представлениям именно гиппокамп играет решающую роль в навыках ориентирования в пространстве, а также в преобразовании кратковременной памяти в долговременную.
Таким образом, опубликованное в Proc Natl Acad Sci USA исследование показало, что даже такое обыденное занятие, как вождение транспортного средства, может оказать существенное влияние на структуру мозга.
#paper
В испытании приняли участие 16 лондонских таксистов с многолетним стажем. Проведённые МРТ сканы показали, что задний гиппокамп водителей такси существенно больше, чем у контрольной группы. При этом объём гиппокампа положительно коррелирует с водительским стажем. Интересно, что изменения затрагивают только правый гиппокампа, левый остаётся без изменений.
Напомним, что по современным представлениям именно гиппокамп играет решающую роль в навыках ориентирования в пространстве, а также в преобразовании кратковременной памяти в долговременную.
Таким образом, опубликованное в Proc Natl Acad Sci USA исследование показало, что даже такое обыденное занятие, как вождение транспортного средства, может оказать существенное влияние на структуру мозга.
#paper
APOD. Этот композитный снимок галактики Андромеды показывает не только существующие в ней звёзды, но и те, которые скоро появятся. Фоновый слой представляет собой оптическое изображение, составленное по данным телескопов Хаббл, Субару и Майалла, и отражает, как не сложно догадаться, текущее звёздное население галактики. Поверх него в желтых тонах наложены снятые инфракрасной обсерваторией Спитцер горячие облака межзвёздного газа и пыли, которые в течение нескольких миллионов лет породят новые молодые звёзды.
#apod
#apod
Кристаллы. Красивый кристалл, напоминающий инвертированную колу со льдом. В роли колы выступает флюорит (фторид кальция, CaF2), встречающийся в природе в большом разнообразии оттенков, от жёлтого до чёрного, как на картинке. Интересно, что идеальный флюорит был бы совершенно бесцветным, как и обрамляющий его кристалл целестина (сульфат стронция, SrSO4). Цвета ему придают небольшие примеси других элементов или же дефекты кристаллической структуры - чем их больше, тем более тёмный оттенок имеет кристалл.
#crystal
#crystal
Новости науки. Едва научившись детектировать гравитационные волны, неугомонные ученые уже ищут способы найти в них признаки экзотической физики. Группа теоретиков из Университета Амстердама (давайте, начинайте шутить про травку) предложила способ изучения экзотических элементарных частиц по форме гравитационно-волнового сигнала.
В физике черных дыр существует интересная концепция "сверхизлучения", сформулированная ещё Зельдовичем в середине прошлого века. Она гласит, что вращающаяся черная дыра может усиливать падающие на неё волны. Энергия для этого усиления занимается у самой черной дыры, и её масса, соответственно, уменьшается. Сегодня считается, что эта изъятая энергия может проявляться в виде необычных частиц - сверхлёгких бозонов (кстати, одних из кандидатов в тёмную материю), которые могут формировать так называемые "гравитационные атомы" - структуры, очень похожие на атомы водорода, но удерживаемые вместе не электромагнитным, а чисто гравитационным взаимодействием.
Всё это ломает мозг уже само по себе, но неугомонные теоретики предложили модель, согласно которой ионизация этих самых гравитационных атомов в системе вращающихся черных дыр может дать заметное искажение поступающего от них гравитационно-волнового сигнала. Как всегда с подобными предсказаниями, дело остаётся за малым - вбухать несколько десятков миллиардов долларов и миллионов человеко-лет в следующее поколение детекторов гравитационных волн и протестировать их предсказания. Если результаты подтвердятся, это станет существенным подспорьем в построении более полных моделей элементарных частиц за рамками Стандартной модели.
Работа опубликована в Physical Review Letters 2 июня 2022 года, ну а полный текст доступен по ссылке - тыц. Безумие!
#news
В физике черных дыр существует интересная концепция "сверхизлучения", сформулированная ещё Зельдовичем в середине прошлого века. Она гласит, что вращающаяся черная дыра может усиливать падающие на неё волны. Энергия для этого усиления занимается у самой черной дыры, и её масса, соответственно, уменьшается. Сегодня считается, что эта изъятая энергия может проявляться в виде необычных частиц - сверхлёгких бозонов (кстати, одних из кандидатов в тёмную материю), которые могут формировать так называемые "гравитационные атомы" - структуры, очень похожие на атомы водорода, но удерживаемые вместе не электромагнитным, а чисто гравитационным взаимодействием.
Всё это ломает мозг уже само по себе, но неугомонные теоретики предложили модель, согласно которой ионизация этих самых гравитационных атомов в системе вращающихся черных дыр может дать заметное искажение поступающего от них гравитационно-волнового сигнала. Как всегда с подобными предсказаниями, дело остаётся за малым - вбухать несколько десятков миллиардов долларов и миллионов человеко-лет в следующее поколение детекторов гравитационных волн и протестировать их предсказания. Если результаты подтвердятся, это станет существенным подспорьем в построении более полных моделей элементарных частиц за рамками Стандартной модели.
Работа опубликована в Physical Review Letters 2 июня 2022 года, ну а полный текст доступен по ссылке - тыц. Безумие!
#news
История науки. Бельгийско-американский астроном Жорж ван Бисбрук наблюдает Марс во время его сближения с Землей, используя крупнейший телескоп-рефрактор своего времени, установленный в Йеркской обсерватории, 1926 год. В том же году американский инженер Роберт Годдард запустил первую ракету на жидком топливе, достигшей впечатляющей высоты 12 метров за 2.5 секунды полёта, что фактически ознаменовало наступление эры развития космических технологий.
#scihistory
#scihistory
Новости науки. Не стоит на месте прогресс в области квантовых вычислений. Достижение квантового превосходства квантовыми компьютерами уже не новость. В 2019 году его удалось продемонстрировать на твердотельном квантовом процессоре Sycamore, разработанном в Google. Имея 53 кубита, он за 200 секунд решил задачу, на которую наилучшим современным компьютерам потребовались бы тысячи лет.
В 2020 году китайская группа сумела добиться квантового превосходства на другом виде квантовых компьютеров - оптическом квантовом процессоре. В нём вместо твердотельных квантовых точек в роли кубитов выступают обычные фотоны света, перемещающиеся по малюсеньким интерферометрам. Фотоны в различных рукавах интерферометра могут взаимодействовать друг с другом, что запутывает их и тем самым образует квантовое состояние. Процессоры такого вида набирают популярность, потому что они гораздо проще в реализации, легко масштабируемы и не требуют охлаждения до сверхнизких температур. Чего, однако, у китайского процессора не было, это возможности программирования. Он представлял собой жестко заданную структуру интерферометров, решающую только строго определённую задачу.
И вот, канадской компании Xanadu удалось показать квантовое превосходство на уже программируемом оптическом квантовом процессоре. Возможность программирования заключается в том, что мы можем, грубо говоря, с помощью специальных электродов изменять фазу фотонов в рукавах интерферометра, тем самым меняя структуру их оптического пути. Квантовый процессор Xanadu Borealis (как он работает можно посмотреть вот тут - тыц) имеет 216 оптических кубит, с помощью которых он сумел за 36 микросекунд решить задачу, на которую самому лучшему современному суперкомпьютеру потребовалось бы 9000 лет. В роли задачи выступил алгоритм бозонной выборки, который сводится к расчету распределения интенсивности бозонов (в данном случае, конечно, фотонов) на выходе запутанной оптической системы. Задача не имеет абсолютно никакой практической значимости и выступает исключительно в роли своеобразного бенчмарка, показывающего производительность системы. Что ж, будем ждать применения технологии к чему-то реальному. Например, к взлому шифрования банковских систем.
Исследование опубликовано в Nature 1 июня 2022 года.
#news
В 2020 году китайская группа сумела добиться квантового превосходства на другом виде квантовых компьютеров - оптическом квантовом процессоре. В нём вместо твердотельных квантовых точек в роли кубитов выступают обычные фотоны света, перемещающиеся по малюсеньким интерферометрам. Фотоны в различных рукавах интерферометра могут взаимодействовать друг с другом, что запутывает их и тем самым образует квантовое состояние. Процессоры такого вида набирают популярность, потому что они гораздо проще в реализации, легко масштабируемы и не требуют охлаждения до сверхнизких температур. Чего, однако, у китайского процессора не было, это возможности программирования. Он представлял собой жестко заданную структуру интерферометров, решающую только строго определённую задачу.
И вот, канадской компании Xanadu удалось показать квантовое превосходство на уже программируемом оптическом квантовом процессоре. Возможность программирования заключается в том, что мы можем, грубо говоря, с помощью специальных электродов изменять фазу фотонов в рукавах интерферометра, тем самым меняя структуру их оптического пути. Квантовый процессор Xanadu Borealis (как он работает можно посмотреть вот тут - тыц) имеет 216 оптических кубит, с помощью которых он сумел за 36 микросекунд решить задачу, на которую самому лучшему современному суперкомпьютеру потребовалось бы 9000 лет. В роли задачи выступил алгоритм бозонной выборки, который сводится к расчету распределения интенсивности бозонов (в данном случае, конечно, фотонов) на выходе запутанной оптической системы. Задача не имеет абсолютно никакой практической значимости и выступает исключительно в роли своеобразного бенчмарка, показывающего производительность системы. Что ж, будем ждать применения технологии к чему-то реальному. Например, к взлому шифрования банковских систем.
Исследование опубликовано в Nature 1 июня 2022 года.
#news
This media is not supported in your browser
VIEW IN TELEGRAM
Анимация. По мере роста наших вычислительных возможностей и более полного понимания устройства климата нашей планеты, мы можем строить всё более глобальные и точные климатические модели. На этой анимации, составленной учеными из MIT совместно с Лабораторией реактивного движения NASA в рамках проекта по моделированию океанического климата, показана структура океанического течения Гольфстрим, простирающегося от Мексиканского залива до побережья Западной Европы. Как видно, течение вовсе не такое однородное, как мы привыкли думать, но состоит из множества подпотоков и турбулентных образований. Наложенные цвета кодируют температуру поверхностного слоя воды. Данные взяты с 2005 по 2007 год.
#animation
#animation