This media is not supported in your browser
VIEW IN TELEGRAM
История науки. Пауль Эрдёш безусловно является одним из самых самобытных математиков в истории. Он был настолько увлечён своим делом, что посвящал математике всё своё время (поговаривают, что до 19 часов в день), а за жизнь успел опубликовать 1500 статей, что, по всей видимости, является абсолютным рекордом среди всех учёных. Многие статьи были опубликованы в соавторстве (что для математики редкость), благодаря чему появилось Число Эрдёша - длина кратчайшего пути от автора до Эрдёша по совместным публикациям.
Перевод видео: "Когда меня спросили "В чем смысл жизни?", я шутливо ответил: "Доказывать, предполагать и держать число SF низким (SF = Supreme fasсist, верховный фашист, так Эрдёш называл Бога). SF определяется следующим образом: если вы делаете что-то плохое, то получаете как минимум два очка SF. Если вы не делаете то хорошее, что могли бы сделать, то получаете как минимум одно очко". Таков смысл жизни по Эрдёшу.
Есть и документальный фильм о нём (с русскими субтитрами!) - "N это число".
#scihistory
Перевод видео: "Когда меня спросили "В чем смысл жизни?", я шутливо ответил: "Доказывать, предполагать и держать число SF низким (SF = Supreme fasсist, верховный фашист, так Эрдёш называл Бога). SF определяется следующим образом: если вы делаете что-то плохое, то получаете как минимум два очка SF. Если вы не делаете то хорошее, что могли бы сделать, то получаете как минимум одно очко". Таков смысл жизни по Эрдёшу.
Есть и документальный фильм о нём (с русскими субтитрами!) - "N это число".
#scihistory
Цитата. "Математик это машина по переработке кофе в теоремы" (с) Пауль Эрдёш
"Есть три степени одряхления. Первая это когда вы забываете собственные теоремы. Вторая - когда вы забываете застегнуть ширинку. А третья - когда вы забываете её расстегнуть" (с) Пауль Эрдёш
#цитата
"Есть три степени одряхления. Первая это когда вы забываете собственные теоремы. Вторая - когда вы забываете застегнуть ширинку. А третья - когда вы забываете её расстегнуть" (с) Пауль Эрдёш
#цитата
Кристаллы. Когда в следующий раз какой-нибудь гуманитарий романтик вам скажет, что в природе не бывает прямых линий, покажите ему этого красавца.
Минерал болеит относится к очень редкому представителю класса галогенидов. Редок он, потому что имеет весьма сложный состав, включая калий, свинец, серебро, медь и хлор (точная химическая формула KPb26Ag9Cu24(OH)48Cl62), а потому встречается всего-лишь в нескольких шахтах, в которых перекрываются месторождения свинца, меди и серебра. Назван он также в честь шахты, в которой был обнаружен - Болео в Мексике.
За свои редкость, глубокий синий цвет и правильную геометрическую форму кристалл очень ценится коллекционерами.
В данном образце болеит размещён в куске мягкой глины размером 2 см (предохранить глиняную матрицу от рассыпания тоже удаётся довольно редко).
#crystal
Минерал болеит относится к очень редкому представителю класса галогенидов. Редок он, потому что имеет весьма сложный состав, включая калий, свинец, серебро, медь и хлор (точная химическая формула KPb26Ag9Cu24(OH)48Cl62), а потому встречается всего-лишь в нескольких шахтах, в которых перекрываются месторождения свинца, меди и серебра. Назван он также в честь шахты, в которой был обнаружен - Болео в Мексике.
За свои редкость, глубокий синий цвет и правильную геометрическую форму кристалл очень ценится коллекционерами.
В данном образце болеит размещён в куске мягкой глины размером 2 см (предохранить глиняную матрицу от рассыпания тоже удаётся довольно редко).
#crystal
Изображение. Телескопы. Впервые взглянув на эти устройства, мало кто подумает, что это телескоп. На самом же деле это LOFAR (Low Frequency Array), один из самых больших радиотелескопов, построенных человечеством. Отличает его простота. Вместо привычных направленных параболических антенн, небольшие плоские дипольные приёмники просто устанавливаются на Земле. Тысячи подобных антеннок раскиданы по всей Европе, составляя суммарную площадь зеркала в 300 000 кв. м. Благодаря этому телескоп одновременно может обозревать огромные участки неба с очень высоким разрешением.
Данные со всех антенн поступают в единый центр обработки. Для их сведения в полезный сигнал необходим суперкомпьютер. Фактически, то, насколько большой участок неба телескоп может обозревать, определяется исключительно доступной мощностью суперкомпьютера.
Применение телескопа простирается от наших самых ближних окрестностей - ионосферы Земли и Солнца - до окраин вселенной - исследования квазаров и эпохи реионизации.
#scimage #telescope
Данные со всех антенн поступают в единый центр обработки. Для их сведения в полезный сигнал необходим суперкомпьютер. Фактически, то, насколько большой участок неба телескоп может обозревать, определяется исключительно доступной мощностью суперкомпьютера.
Применение телескопа простирается от наших самых ближних окрестностей - ионосферы Земли и Солнца - до окраин вселенной - исследования квазаров и эпохи реионизации.
#scimage #telescope
APOD. Изображение ночной стороны Венеры в инфракрасном свете, полученное японским аппаратом Akatsuki (яп. "рассвет", не путать с Наруто!) в 2018 году.
Более интенсивное инфракрасное излучение свидетельствует о более высокой температуре. Тёмный участок вблизи экваториальной плоскости соответствует холодным (в случае Венеры правильнее сказать "менее горячим") и высоким облакам, поглощающим излучение от горячих нижних слоёв атмосферы.
Интересна многострадальная судьба Akatsuki. Аппарат должен был выйти на орбиту Венеры в 2010 году, но сделать этого не удалось из-за неполадок с двигателями. Бедолаге пришлось проскитаться ещё пять лет до следующего сближения с планетой. С тех пор он исправно несёт свою службу, исследуя в основном венерианский климат.
#apod
Более интенсивное инфракрасное излучение свидетельствует о более высокой температуре. Тёмный участок вблизи экваториальной плоскости соответствует холодным (в случае Венеры правильнее сказать "менее горячим") и высоким облакам, поглощающим излучение от горячих нижних слоёв атмосферы.
Интересна многострадальная судьба Akatsuki. Аппарат должен был выйти на орбиту Венеры в 2010 году, но сделать этого не удалось из-за неполадок с двигателями. Бедолаге пришлось проскитаться ещё пять лет до следующего сближения с планетой. С тех пор он исправно несёт свою службу, исследуя в основном венерианский климат.
#apod
This media is not supported in your browser
VIEW IN TELEGRAM
Явление. Сверхпроводники обладают многими удивительными свойствами. Одно из них - возможность левитации в магнитных полях, когда сверхпроводящий материал подвешивается на небольшом расстоянии от магнита (или наоборот!), обладая при этом поразительной стабильностью.
Происходит это благодаря эффекту Мейснера. Сверхпроводники обладают способностью полностью компенсировать внешнее магнитное поле, как бы выталкивать его из себя. Но одного выталкивания недостаточно, чтобы придать материалу стабильность. Так называемые сверхпроводники второго рода всё же пропускают магнитное поле, но делают только только по узким каналам, называемым вихрями Абрикосова или квантовыми вихрями. Эти каналы играют роль своеобразных замков, и именно они позволяют надёжно зафиксировать вещество вблизи магнита.
В демонстрации на видео, сверхпроводящее вещество (вероятно, YBCO) сперва охлаждается жидким азотом для перехода в сверхпроводящее состояние, а затем над ним подвешивается постоянный магнит в форме кубика.
#effect
Происходит это благодаря эффекту Мейснера. Сверхпроводники обладают способностью полностью компенсировать внешнее магнитное поле, как бы выталкивать его из себя. Но одного выталкивания недостаточно, чтобы придать материалу стабильность. Так называемые сверхпроводники второго рода всё же пропускают магнитное поле, но делают только только по узким каналам, называемым вихрями Абрикосова или квантовыми вихрями. Эти каналы играют роль своеобразных замков, и именно они позволяют надёжно зафиксировать вещество вблизи магнита.
В демонстрации на видео, сверхпроводящее вещество (вероятно, YBCO) сперва охлаждается жидким азотом для перехода в сверхпроводящее состояние, а затем над ним подвешивается постоянный магнит в форме кубика.
#effect
Новости науки. Уже довольно давно бытует ряд гипотез о том, что жизнь или её прекурсоры попали на молодую Землю из космической среды (гипотезы панспермии). В копилочке сторонников панспермии есть и ряд экспериментальных подтверждений. Так, было обнаружено наличие простых органических молекул и даже некоторых аминокислот в составе вещества комет и метеоритов.
Согласно новым данным, полученным немецкими исследователями, процесс космического органического синтеза может заходить ещё дальше и проходить в более суровых условиях. Они обнаружили, что целые пептидные цепочки (несколько соединённых друг с другом молекул аминокислот), являющиеся важными прекурсорами органической жизни, могут образовываться даже на мелких частицах космической пыли. Причем процесс может эффективно происходить при сверхнизких космических температурах. Для образования пептидных цепочек таким способом необходимы лишь три вещества - углерод, оксид углерода и аммиак, все они в изобилии присутствуют в межзвёздных молекулярных облаках.
Стоит заметить, что обнаружены не реальные образцы пептидов в реальной космической пыли. Пока что процесс их синтеза проведён в лабораторных условиях, приближенных к космическим, - в вакуумной камере и при сверхнизкой температуре. Поэтому с точными экспериментальными подтверждениями придётся ещё подождать.
Исследование опубликовано в Nature Astronomy 10 февраля 2022 года.
#news
Согласно новым данным, полученным немецкими исследователями, процесс космического органического синтеза может заходить ещё дальше и проходить в более суровых условиях. Они обнаружили, что целые пептидные цепочки (несколько соединённых друг с другом молекул аминокислот), являющиеся важными прекурсорами органической жизни, могут образовываться даже на мелких частицах космической пыли. Причем процесс может эффективно происходить при сверхнизких космических температурах. Для образования пептидных цепочек таким способом необходимы лишь три вещества - углерод, оксид углерода и аммиак, все они в изобилии присутствуют в межзвёздных молекулярных облаках.
Стоит заметить, что обнаружены не реальные образцы пептидов в реальной космической пыли. Пока что процесс их синтеза проведён в лабораторных условиях, приближенных к космическим, - в вакуумной камере и при сверхнизкой температуре. Поэтому с точными экспериментальными подтверждениями придётся ещё подождать.
Исследование опубликовано в Nature Astronomy 10 февраля 2022 года.
#news
Научная статья. Может ли научная публикация являться предметом рассмотрения самой себя? Авторы статьи "Несколько Гудменов: соавторы-однофамильцы в области экономики" доказали, что ещё как может! Статья написана четыремя людьми по фамилии Гудмен - Аленом, Джошуа, Лукасом и Сареной. И, собственно, практически единственным посланием статьи является тот факт, что она написана четыремя людьми с одной фамилией, и другой такой нет (по крайней мере в области экономики. Нужно выделить побольше грантов на исследование этой темы в других областях)! Авторы отмечают, что положение примечательно ещё и тем, что никто из них не связан родственными или семейными связями.
Но авторы признают и свершения предшественников. Предыдущий рекорд принадлежит двум статьям с тремя соавторами-однофамильцами.
Интересный факт, подмеченный в публикации: ученые, чьи инициалы в алфавитном порядке стоят раньше, по статистике строят более успешную научную карьеру. Объясняется это тем, что они раньше прочих появляются в списке авторов (при равнозначном вкладе в исследование, конечно)
Так что, если решите заняться наукой, рекомендуем экономику - там можно опубликовать практически что угодно!
Статья опубликована в Economic Inquiry в 2015 году. Полный текст по ссылке - тыц.
P.S. Сноска к статье: "за неоценимую помощь в исследовании мы благодарим Напата Джатусрипитака и Карлоса Паеца, хотя их фамилии и отличаются от наших".
#paper
Но авторы признают и свершения предшественников. Предыдущий рекорд принадлежит двум статьям с тремя соавторами-однофамильцами.
Интересный факт, подмеченный в публикации: ученые, чьи инициалы в алфавитном порядке стоят раньше, по статистике строят более успешную научную карьеру. Объясняется это тем, что они раньше прочих появляются в списке авторов (при равнозначном вкладе в исследование, конечно)
Так что, если решите заняться наукой, рекомендуем экономику - там можно опубликовать практически что угодно!
Статья опубликована в Economic Inquiry в 2015 году. Полный текст по ссылке - тыц.
P.S. Сноска к статье: "за неоценимую помощь в исследовании мы благодарим Напата Джатусрипитака и Карлоса Паеца, хотя их фамилии и отличаются от наших".
#paper
Кристаллы. Поговорим о двойниковании. Кристалл это некоторое упорядоченное расположение атомов. В идеале бесконечное и идеально повторяющееся. Но и в росте кристаллов случаются ошибки. Такие ошибки могут быть вызваны случайными дефектами, либо же изменяющимися внешними условиями - температурой и давлением. Когда такая ошибка происходит, кристалл начинает расти в новом направлении, а область сочленения двух кристаллических решеток называется осью или плоскостью двойникования (см. изображение).
Двойникование встречается очень часто и может сделать кристалл визуально более привлекательным. Несколько примеров двойникования на изображениях (в порядке следования):
- три кубика пирита, растущие друг в друге;
- вросшие друг в друга гексагоны берилла;
- красивая шпинель с двойниками в виде цветочка;
- сложная структура из двойников рутила;
- микрофотографии алмаза. На первом изображении идеальный правильный кристалл, дальше - различные двойники.
#crystal
Двойникование встречается очень часто и может сделать кристалл визуально более привлекательным. Несколько примеров двойникования на изображениях (в порядке следования):
- три кубика пирита, растущие друг в друге;
- вросшие друг в друга гексагоны берилла;
- красивая шпинель с двойниками в виде цветочка;
- сложная структура из двойников рутила;
- микрофотографии алмаза. На первом изображении идеальный правильный кристалл, дальше - различные двойники.
#crystal
Цитата. "Молодой человек, в математике вы не понимаете вещи, вы просто к ним привыкаете" (с) Джон фон Нейман
Изречение было ответом коллеге, Феликсу Смиту, который пожаловался фон Нейману, что не может понять решение задачи. Какая доля шутки заключена в этом высказывании возможно величайшего математика в истории, мы уже не узнаем. Но ожесточённые споры оно вызывает по сей день :)
#цитата
Изречение было ответом коллеге, Феликсу Смиту, который пожаловался фон Нейману, что не может понять решение задачи. Какая доля шутки заключена в этом высказывании возможно величайшего математика в истории, мы уже не узнаем. Но ожесточённые споры оно вызывает по сей день :)
#цитата
Изображение. Оптическое изображение панциря маленькой морской улитки (диаметр раковины 2 мм). Свечение испускается в результате флуоресценции, возникающей при облучении ультрафиолетовым светом. Сам панцирь излучает мягкий синий свет, а оранжевый и красный соответствуют растущим на нём колониям цианобактерий. Панцирь имеет форму практически идеальной спирали Архимеда.
Флуоресценция вообще свойственна многим живым организмам, особенно морским. Пока что доподлинно неизвестно, играет ли она какую-то роль в эволюции (по некоторым предположениям, свечение может служить как распознавательный сигнал или привлечение еды) или же это просто побочный продукт биохимии.
Ссылка на изображение в высоком разрешении - тыц.
#scimage
Флуоресценция вообще свойственна многим живым организмам, особенно морским. Пока что доподлинно неизвестно, играет ли она какую-то роль в эволюции (по некоторым предположениям, свечение может служить как распознавательный сигнал или привлечение еды) или же это просто побочный продукт биохимии.
Ссылка на изображение в высоком разрешении - тыц.
#scimage
APOD. Изображение центра нашей галактики в радиоволновом диапазоне, полученное с помощью южноафриканского радиотелескопа MeerKAT.
Обычные звёзды не являются мощными источниками радиоволн. Мощное радиоизлучение характерно лишь для ряда высокоэнергетических процессов, происходящих вблизи черных дыр, нейтронных звёзд или остатков сверхновых. Кроме того, радиоизлучение легко проникает через плотные облака межзвёздного газа, которых полным-полно вблизи центра Млечного Пути и которые полностью блокируют видимый свет.
Яркое пятно в самом центре галактики, само собой, сверхмассивная черная дыра Sgtr A*. Сферические источники представляют собой остатки вспышек сверхновых (например, справа снизу SNR359.1). Тонкие протяженные линии - очень интересное явление, именуемое радионитями, о природе которых ещё спорят. По всей видимости они порождаются заряженными частицами, взаимодействующими с магнитным полем галактики.
Изображение в высоком разрешении - тыц. Статья с описанием (англ.) - тыц.
#apod
Обычные звёзды не являются мощными источниками радиоволн. Мощное радиоизлучение характерно лишь для ряда высокоэнергетических процессов, происходящих вблизи черных дыр, нейтронных звёзд или остатков сверхновых. Кроме того, радиоизлучение легко проникает через плотные облака межзвёздного газа, которых полным-полно вблизи центра Млечного Пути и которые полностью блокируют видимый свет.
Яркое пятно в самом центре галактики, само собой, сверхмассивная черная дыра Sgtr A*. Сферические источники представляют собой остатки вспышек сверхновых (например, справа снизу SNR359.1). Тонкие протяженные линии - очень интересное явление, именуемое радионитями, о природе которых ещё спорят. По всей видимости они порождаются заряженными частицами, взаимодействующими с магнитным полем галактики.
Изображение в высоком разрешении - тыц. Статья с описанием (англ.) - тыц.
#apod
Цитата. "У меня есть друг, художник, и порой он принимает такую точку зрения, с которой я не согласен. Он берет цветок и говорит: «Посмотри, как он прекрасен», и я соглашаюсь с этим. И тут он добавляет: «Я, будучи художником, способен видеть красоту цветка. Но ты, будучи ученым, разбираешь его на части, и он становится скучным». Я думаю, что он немного ненормальный.
Во-первых, красота, которую видит он, доступна другим людям — в том числе и мне, в чем я уверен. Несмотря на то, что я, быть может, не так утончен в эстетическом плане, как он, я все же могу оценить красоту цветка. Но в то же время я вижу в цветке гораздо больше него. Я могу представить клетки внутри этого цветка, которые тоже обладают красотой. Красота существует не только в масштабе одного сантиметра, но и в гораздо более малых масштабах.
Существуют сложные действия клеток и другие процессы. Интересен тот факт, что цвета цветка развились в процессе эволюции, чтобы привлекать насекомых для его опыления; это означает, что насекомые способны видеть цвета. Отсюда возникает новый вопрос: существует ли эстетическое чувство, которым обладаем мы, и в более низких формах жизни? Знание науки порождает множество интересных вопросов, так что оно только увеличивает восторг, тайну и благоговение, которое мы испытываем при виде цветка. Только увеличивает. Я не понимаю, каким образом оно может их уменьшать." (с) Ричард Фейнман
#цитата
Во-первых, красота, которую видит он, доступна другим людям — в том числе и мне, в чем я уверен. Несмотря на то, что я, быть может, не так утончен в эстетическом плане, как он, я все же могу оценить красоту цветка. Но в то же время я вижу в цветке гораздо больше него. Я могу представить клетки внутри этого цветка, которые тоже обладают красотой. Красота существует не только в масштабе одного сантиметра, но и в гораздо более малых масштабах.
Существуют сложные действия клеток и другие процессы. Интересен тот факт, что цвета цветка развились в процессе эволюции, чтобы привлекать насекомых для его опыления; это означает, что насекомые способны видеть цвета. Отсюда возникает новый вопрос: существует ли эстетическое чувство, которым обладаем мы, и в более низких формах жизни? Знание науки порождает множество интересных вопросов, так что оно только увеличивает восторг, тайну и благоговение, которое мы испытываем при виде цветка. Только увеличивает. Я не понимаю, каким образом оно может их уменьшать." (с) Ричард Фейнман
#цитата
Новости науки. Эффекты общей теории относительности (ОТО) сложно поддаются нашему обыденному восприятию. ОТО рассматривает вселенную, как единый пространсвенно-временной континуум (то есть, пространство и время очень тесно взаимосвязаны друг с другом), а энергия может это пространство-время всячески искривлять.
Например, известно, что вблизи тяжелых объектов (как наша планета) время течет медленнее, чем вдали от них. Этот эффект известен достаточно давно и многократно подтверждён экспериментально. Например, если вы залезете на гору Эверест и просидите там 30 лет, то состаритесь на одну миллисекунду больше, чем на уровне моря. А если прокукуете 30 лет на Юпитере, то сэкономите целых 18 секунд (не рекомендуем в качестве средства омоложения)! Это, конечно, не семь лет за час, как в Интерстелларе, но всё же.
Гравитационное замедление времени играет роль и в технике. Например, при расчетах движения спутников нужно учитывать, что они находятся далеко от Земли и время для них течет чуть быстрее, чем для нас.
Ученые из Университета Колорадо измерили гравитационное замедление времени на беспрецедентных доселе масштабах. Им удалось зафиксировать разность хода часов, разделенных в пространстве всего-лишь одним миллиметром! Предыдущий рекорд, кстати, составляет 30 см. Конечно, для подобного эксперимента нужны не просто сверхточные, а уже гиперточные атомные часы, и такие исследователям пришлось сконструировать с помощью охлаждённых до сверхнизких температур атомов стронция, удерживаемых в оптической решетке.
Наш любопытный ценитель физики может заметить, мол, ну и что, ведь ничего принципиально нового не открыто! Нет, теория относительности как работала, так и работает, но тем не менее, эксперимент имеет огромное значение. Одной из основных задач современной физики является объединение общей теории относительности (проявляющей себя в основном на больших масштабах) с квантовой механикой (работающей на очень малых расстояниях). А возможность измерения эффектов ОТО в масштабах миллиметров или меньше может помочь узнать, как же эти две теории согласуются друг с другом и согласуются ли вообще.
Статья опубликована в Nature 16 февраля 2022 года.
#news
Например, известно, что вблизи тяжелых объектов (как наша планета) время течет медленнее, чем вдали от них. Этот эффект известен достаточно давно и многократно подтверждён экспериментально. Например, если вы залезете на гору Эверест и просидите там 30 лет, то состаритесь на одну миллисекунду больше, чем на уровне моря. А если прокукуете 30 лет на Юпитере, то сэкономите целых 18 секунд (не рекомендуем в качестве средства омоложения)! Это, конечно, не семь лет за час, как в Интерстелларе, но всё же.
Гравитационное замедление времени играет роль и в технике. Например, при расчетах движения спутников нужно учитывать, что они находятся далеко от Земли и время для них течет чуть быстрее, чем для нас.
Ученые из Университета Колорадо измерили гравитационное замедление времени на беспрецедентных доселе масштабах. Им удалось зафиксировать разность хода часов, разделенных в пространстве всего-лишь одним миллиметром! Предыдущий рекорд, кстати, составляет 30 см. Конечно, для подобного эксперимента нужны не просто сверхточные, а уже гиперточные атомные часы, и такие исследователям пришлось сконструировать с помощью охлаждённых до сверхнизких температур атомов стронция, удерживаемых в оптической решетке.
Наш любопытный ценитель физики может заметить, мол, ну и что, ведь ничего принципиально нового не открыто! Нет, теория относительности как работала, так и работает, но тем не менее, эксперимент имеет огромное значение. Одной из основных задач современной физики является объединение общей теории относительности (проявляющей себя в основном на больших масштабах) с квантовой механикой (работающей на очень малых расстояниях). А возможность измерения эффектов ОТО в масштабах миллиметров или меньше может помочь узнать, как же эти две теории согласуются друг с другом и согласуются ли вообще.
Статья опубликована в Nature 16 февраля 2022 года.
#news