Physics.Math.Code
150K subscribers
5.23K photos
2.23K videos
5.82K files
4.59K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
🥺 Невидимые силы: странная физика кинематических скульптур

В прошлом посте была интересная задача про массы сегментов кинетических скульптур. Здесь продолжим рассматривать коллаборации физики и искусства.

▪️ Факт 1: Это не маятник. Или маятник?

Казалось бы, висит грузик на палочке — классический маятник. Но нет! У простого маятника вся масса сосредоточена в точке, а у кинетик-скульптуры она распределена по сложным рычагам. Такая система называется физическим маятником (или сложным). Его период колебаний зависит не от длины нити, а от момента инерции всей конструкции относительно точки подвеса. Художник, меняя форму и распределение масс, фактически «настраивает» частоту колебаний каждого «плеча», создавая не хаос, а визуально гармоничный танец.

▪️ Факт 2: Загадка «невозможного» движения.

Присмотритесь к сложным мобилям: легкое дуновение внизу может вызвать противоположное по направлению движение на верхнем ярусе. Это не оптическая иллюзия, а следствие закона сохранения момента импульса.
Представьте: вы раскручиваетесь на вращающемся стуле, разведя руки. Если резко прижмете руки — вы раскрутитесь быстрее. В изолированной системе (наш мобиль с низким трением) момент импульса L = I • ω должен сохраняться.
Нижний сегмент, начав движение (изменив свое ω), через систему связей передает этот импульс верхним ярусам, заставляя их компенсировать изменение. Получается связь рычагов, подчиненная строгому закону.

▪️ Факт 3: Точка невесомости

В идеально сбалансированном мобиле есть особая точка — центр масс всей системы. Она располагается ниже точки подвеса. Но что, если бы мы могли поднять её выше точки подвеса? Получилась бы неустойчивая точка равновесия , как перевернутый маятник. Легкий толчок — и конструкция не вернется в исходное положение, а перевернется. Такие «неустойчивые» мобили тоже существуют — их движение непредсказуемо и хаотично, это вызов для художника-физика.

▪️Факт 4: Битва с трением — квантовый предел.

Идея кинетической скульптуры — вечное движение. Но его убивает трение. Современные создатели идут на хитрости: сверхлегкие материалы (карбон), магнитные подвесы (левитация) или специальные подшипники. Но есть теоретический предел. Даже в идеальном вакууме при абсолютном нуле колебания затухли бы из-за квантовых флуктуаций и излучения гравитационных волн (хоть и за время, много порядков превышающее возраст Вселенной). Наш мобиль — в плену у фундаментальных законов мироздания.

Кинетическая скульптура — это лаборатория по динамике:
1. Статика (баланс моментов)
2. Гармонические колебания (физический маятник)
3. Сохранение момента импульса (взаимодействие сегментов)
4. Борьба с энтропией (потеря энергии на трение)

Она напоминает нам, что красота — это не только форма, но и чистая функция, описываемая лаконичными уравнениями. Это физика, которую можно не только понять, но и увидеть. Самые сложные мобили рассчитываются с помощью алгоритмов, решающих системы уравнений равновесия для каждого узла. Так что следующему Колдеру, возможно, понадобится знать не только физику, но и какой-нибудь язык программирования. #физика #механика #искусство #наука #кинематика #скульптура #равновесие #маятник #physics #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
38👍18🔥14😍5🤯1🤩1
Задача про аквариум: физика или просто геометрия?

Дано: закрытый прямоугольный аквариум размером 1×2×4 метра. Внутри плещется вода.

Сначала он стоял на самой большой грани 2×4 метра — и уровень воды был 25 см.

Затем его перевернули и поставили на грань 1×2 метра.

Вопрос: какой теперь стала глубина? Сможете в уме быстро посчитать новый уровень?

Кажется, что это уровень максимум средней школы, но без чертежа даже многие взрослые ошибаются именно в таких «простых» задачках.

Эту задачу мы нашли у коллег в канале «Зачем мне эта математика». Там правильно подметили: не торопитесь составлять сложные уравнения и вводить неизвестные. Если включить пространственное мышление, ответ находится гораздо быстрее.

Переходите по ссылке, чтобы сверить свой ответ (спойлер: он получается красивым). И подписывайтесь — там есть чем размять мозг, чтобы держать интеллект в тонусе.

Реклама. ООО «ФРОМ СКРЭТЧ», ИНН 9724205560, erid: 2VtzqvTgvjC
🤝2718👍18🔥8🗿31❤‍🔥1
Media is too big
VIEW IN TELEGRAM
📝 Квадратура круга [1972] Центрнаучфильм

Детская научно – познавательная картина о древней математической загадке, названной «квадратура круга», о дальнейшей истории этой математической задачи. Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки (без шкалы с делениями) квадрата, равновеликого по площади данному кругу. Наряду с трисекцией угла и удвоением куба, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.

Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу.

О свойствах параболы

Наш канал с научно-техническими фильмами: 🎥 Учебные фильмы 🎞 @maths_lib

#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥41👍2412😱2🤯1🤩1
Media is too big
VIEW IN TELEGRAM
🤪 Сверхсильные магнитные поля: от лаборатории до реальной жизни

Магнитные поля, превышающие земное (≈ 0.5 Гаусса) или поле простого ферритового магнита, давно перестали быть лабораторным феноменом. Речь о полях от 1 Тесла (10 000 Гаусс) и выше, вплоть до рекордных импульсных значений в тысячи Тесла. Рассмотрим малоизвестный применения сверхсильных полей в реальности, которая нас окружает.

▫️ 1. Чистота кремния для микроэлектроники. При выращивании монокристаллов кремния методом Чохральского сверхпроводящие магниты (порядка 0.5 Тл) подавляют конвекционные потоки в расплаве. Это позволяет получать сверхчистые и однородные кристаллы, что критически важно для производства современных процессоров и силовой электроники.
▫️ 2. Борьба с опухолями. Технология «Магнитная гипертермия». В опухоль вводятся наночастицы оксида железа. Пациента помещают в переменное поле высокой частоты (при индукции ~0.01-0.1 Тл). Частицы разогреваются, выборочно уничтожая раковые клетки, минимально затрагивая здоровые ткани.
▫️ 3. Обработка воды. Мощные неодимовые магниты (поле ~0.1-0.2 Тл на поверхности) устанавливаются на трубопроводы с жесткой водой. Хотя физический механизм до конца не ясен (споры идут о влиянии на образование кристаллов карбоната кальция), на практике это снижает образование накипи в промышленных котлах и теплообменниках без химических реагентов.
▫️ 4. Аэродинамические трубы с магнитной левитацией. Для моделирования гиперзвуковых полетов (числа Маха > 5) используют ударные трубы, где диамагнитные модели (например, с графитовым покрытием) левитируют в поле ~15-20 Тл. Это позволяет изучать обтекание без механических креплений, искажающих поток.

⚛️ Фронт науки: последние достижения

▪️Рекордные статические поля: В Национальной лаборатории сильных магнитных полей (США) в 2023 году достигнуто поле 45.5 Тл в гибридном магните (сверхпроводящая катушка + резистивная), что является абсолютным рекордом для непрерывного поля, доступного для пользователей.

▪️Импульсные поля и новая материя: В лабораториях (Россия, Германия, Япония) с помощью импульсных полей (сотни Тл, длительность микросекунды) открывают новые квантовые фазы вещества — экситонные изоляторы, новые типы спинового упорядочения. В 2022 году в поле ~90 Тл в селениде урана URu₂Si₂ была обнаружена необычная фаза «скрытого спинового порядка».

▪️Магниты для термояда: Успехи проекта ITER — создание и испытание D-образных сверхпроводящих катушек тороидального поля (до 11.8 Тл, энергия хранения 41 ГДж). Это инженерный триумф, открывающий путь к управляемому синтезу.

📝 Опыты для дома:

1. Диамагнитная левитация (опыт с графитом). Возьмите небольшой пиро- или кусочек высокоориентированного пиролитического графита (продается как «левитирующий графит») и несколько мощных неодимовых магнитов (например, N52) в виде дисков или плиток. Расположите магниты одноименными полюсами вверх, создав область с сильным градиентом поля. Аккуратно поместите графит над магнитами — он будет левитировать. Это доказательство диамагнетизма, что лежит в основе левитации лягушки в поле 16 Тл.

2. Разрушение магнитного поля (эффект Фарадея). Возьмите толстостенную медную или алюминиенюю трубку и мощный неодимовый магнит (в форме цилиндра или шара). Опустите магнит внутрь трубки — он будет падать замедленно, как в густой жидкости. Причина: изменяющийся магнитный поток наводит в стенках вихревые токи, поле которых по правилу Ленца противодействует падению магнита. Наглядная демонстрация электромагнитного торможения и связи поля с движением.

3. Наблюдение гистерезиса (качественно). Понадобится два мощных магнита и стальной гвоздь или пластина (мягкая сталь). Намагнитите гвоздь с помощью магнита. Проверьте, притягивает ли он скрепки. Затем сильно ударьте гвоздь молотком или нагрейте его на газовой горелке докрасна и дайте остыть. Намагниченность резко уменьшится или исчезнет. Это демонстрация потери магнитного упорядочения при нагреве выше точки Кюри и влияния механических воздействий на доменную структуру. #физика #магнетизм #наука #эксперименты #физика #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4827👍245❤‍🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🌈 Физика цвета

🎨 1. Цвета, которого нет
В спектре радуги нет розового (мадженты). Он возникает только в нашем мозге, когда одновременно стимулируются красные и синие колбочки, без промежуточной зеленой составляющей. Это «неспектральный» цвет.

👁 2. Жёлтый — самый фальшивый
Жёлтый свет с длиной волны ~580 нм мы почти не различаем от смеси красного и зелёного. Поэтому в RGB-мониторах нет жёлтых субпикселей — его имитируют соседние красный и зелёный. Наш глаз обманывается легко.

🔴3. sRGB — компромисс 90-х
Стандарт sRGB, на котором работает почти весь интернет, был создан в 1996 году для CRT-мониторов и принтеров. Его цветовой охват сознательно ограничили, чтобы дешёвые устройства могли его воспроизвести. Поэтому экраны современных дисплеев показывают цвета «бледнее», чем могут в теории.

⚡️ 4. Цвет — это электродинамика

Цвет предмета — это не его свойство, а история о том, какие электромагнитные волны он не поглотил. Красная ягода отражает преимущественно красный, поглощая синий и зелёный. А если осветить её синим светом, она станет почти чёрной. Кстати, в ОГЭ по физике есть задания на эту тему

🧠 5. Нейроны опережают фотоны
Сигнал от колбочек сетчатки обрабатывается ещё в глазу — горизонтальные и амакриновые клетки сразу вычисляют контраст и цветовые оппонентные каналы (красный-зелёный, синий-жёлтый). Мозг получает уже «скомпрессированные» данные.

🟡 6. Наночастицы золота — красные
Золото в макромире жёлтое, но наночастицы диаметром ~50 нм — ярко-красные (рубиновое стекло). Это из-за поверхностного плазмонного резонанса — коллективных колебаний электронов, которые сильно поглощают сине-зелёную часть спектра.

💻 7. 8-битный цвет — не всегда 256 оттенков
В старых системах (например, EGA) 4-битная палитра (16 цветов) жёстко задавалась на уровне железа. А в формате GIF используется LZW-сжатие и палитра до 256 цветов, которые выбираются из 16-миллионных — поэтому так сложно передавать плавные градиенты.

🌀 8. Фиолетовый — самый короткий и длинный одновременно
Спектральный фиолетовый (~400 нм) — самый коротковолновой видимый свет. Но пурпурный и сиреневый — результат смешения синего и красного (длинные + короткие волны), их нет в радуге. Это «цвета вне спектра».

Интересно, что половина этих фактов стала критичной для разработки дисплеев, фотоаппаратов и даже алгоритмов сжатия изображений. Цвет всегда связан с физикой света и с биологией восприятия. #физика #волны #цвет #наука #электродинамика #оптика #физика #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1117🔥60👍40❤‍🔥62😱2👻2🤝2👾2👏1
Media is too big
VIEW IN TELEGRAM
🖥 How Scientists Discovered Atoms? // Как ученые открыли атомы?

1885 И. Бальмер открыл спектральную серию атома водорода, открывают их почти 70 лет.
1897 Дж Томсон открыл электрон.
1899 Э. Резерфорд показал наличие излучения ураном альфа- и бета-лучей.
1900 М. Планк ввел постоянную, имеющую размерность действия.
1900 П. Виллар открыл гамма лучи.
1905 А. Эйнштейн открыл закон взаимосвязи массы и энергии, квантовый характер света.
1906 Т. Лайман открыл спектральную серию атома водорода.
1908 Ф. Пашен открыл спектральную серию атома водорода.
1910 А. Гааз модель атома, связывающая квантовый характер излучения со структурой.
1910 Э. Резерфорд открыл атомное ядро и создал планетарную модель атома.
1913 Н. Бор разработал квантовую теорию атома водорода, ввел главное n квановое число.
1913 И. Штарк открыл явление расщепления спектральных линий в электрическом поле.
1913 английский физик Г. Мозли установил, что заряд ядра атома всегда численно равен порядковому (атомному) номеру элемента в Периодической системе.
1915 А. Зоммерфельд ввел радиальное и азимутальное квантовые числа.
1919 Э. Резерфорд открыл протон, первая ядерная реакция превращения азота в кислород.
1922 Ф. Брэккет открыл спектральную серию атома водорода.
1923 Л.де Бройльразвил идею о волновых свойствах материи (основа теории Шрёдингера).
1924 А. Пфунд открыл спектральную серию атома водорода.
1924 В. Паули сформулировал (принцип Паули) современной теоретической физики.
1926 Э. Щрёдингер построил волновую механику, дал основное её уравнение.
1927 В. Гейзенберг сформулировал принцип неопределенности в квантовой механике.
1927 Ф. Хунд установил два эмпирических правила расположения энерг-х уровней атома.
1928 П.Дирак квантовомеханическое уравнение движения релятивистского электрона е– .
1931 В. Паули гипотеза нейтрино.
1932 Дж. Чедвик открыл нейтрон, К. Андерсон открыл позитрон е+.
1938 О.Ган, Ф. Штрассман открыли деление ядра урана.
1944 М. Ивинг, Дж. Ворцель открыто сверхдальнее распространение звука в океане.
1948 Дж. Бардин, У Браттейн изобретен полупроводниковый транзистор.
1948 Д. Габор создание голографии.
1949 У. Шокли предложил р-n-транзистор.
1950 И.Тамм, Л. Спитцер и др. изоляция высокотемпературной плазмы магнитным полем.
1952 Д. Глезер изобрел пузырьковую камеру.
1953 К.Дж. Хамфрис открыл спектральную серию атома водорода.
1959 Э. Сегре открытие антипротона.
1963 М. Гепперт-Майер и Г. Иенсен теория оболочечного строения ядра. Нобел. премии.
1963 М. Гелл-Манном и Д. Цвейгом введено в науку понятие о кварках.

Атом – мельчайшая частица химического вещества, неделимая химическим путем, но физики научились расщеплять атом на части. Одни вещества превращать в другие, изменяя состав атомного ядра. Открытия частиц электрона, фотона, протона, электрического заряда, разложение белого света в цветной спектр и другие явления послужили стимулом развития интереса к строению вещества. Но только в ХХ веке наука вплотную подошла к разработке и созданию модели атома. В 1920 г. Э. Резерфорд предложил орбитальную модель атома. Существенный недостаток модели состоял в том, что при движении частицы ею излучается (теряется) энергия и электрон со временем должен упасть на ядро атома. Этот недостаток устраняла модель атома, предложенная Н. Бором, который введением двух постулатов, носящие теперь его имя, скорректировал орбитальную модель атома Резерфорда. #атом #физика #атомная_физика #видеоуроки #ядерная_физика #science #МКТ #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4122👍19🤩32😱2
⚙️ Закон сохранения момента импульса 💫

Для замкнутой системы суммарный момент импульсов всех материальных точек остается постоянным во времени. То есть, также, как и для поступательного движения, момент импульса системы может изменяться только лишь при внешнем воздействии на нее. Вне этих воздействий могут меняться составляющие момента импульса, но не сам момент импульса:
dL/dt = J × dΩ/dt = J × ε = M
при M = 0 получаем L = J × Ω = const

Объяснение GIF: прижимая к себе тяжелые предметы, мы уменьшаем полный момент инерции J, поэтому, согласно L = J × Ω , угловая скорость вращения Ω = L / J — увеличивается. #gif #физика #механика #видеоуроки #кинематика #physics

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4828🔥17❤‍🔥3🤯31🤩1🌚1
👨🏻‍💻 Присоединяйтесь к нашей беседе в VK группе Physics.Math.Code

🗣 Беседа в VK (пригласительная ссылка)

🖥 Обсуждаем там физику, математику, программирование и железо.

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
13🔥7🤨5👍4🗿4🌚1👨‍💻1🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Труба Рубенса — физический эксперимент по демонстрации стоячей волны, основанный на связи между звуковыми волнами и давлением газа.

Для эксперимента берут отрезок трубы, перфорированный по всей длине. Один конец подключается к маленькому динамику, а второй — к источнику горючего газа. Труба заполнена горючим газом, так что просачивающийся через отверстия газ горит. Если используется постоянная частота, то в пределах трубы может сформироваться стоячая волна. Когда динамик включен, в трубе формируются области повышенного и пониженного давления. Там, где благодаря звуковым волнам находится область повышенного давления, через отверстия просачивается больше газа и высота пламени больше. Благодаря этому можно измерить длину волны просто измеряя рулеткой расстояние между пиками.

В перфорированной трубе горит газ (пропан). Когда мы подаём на неё звук определённой частоты, в трубе образуется стоячая звуковая волна с чётко выраженными пучностями (максимумы давления) и узлами (минимумы). Пламя реагирует на перепады давления: в пучностях оно ниже (газ выходит хуже), в узлах — выше. Мы видим «замороженную» картинку звука. [ На видео картинка меняется потому что музыкант меняет частоту ]

Немного продвинутых фактов:

▪️ 1. Это не просто «огненный график». Труба Рубенса — это термоакустическая система. Звуковая волна совершает работу над газовым пламенем, модулируя его, а реакция пламени (изменение температуры и плотности) в свою очередь влияет на акустические свойства среды. Это простейшая модель для изучения термоакустической неустойчивости — явления, которое может приводить к разрушительным колебаниям в реактивных двигателях или, наоборот, использоваться в экологичных термоакустических холодильниках, где вместо фреона — инертный газ, а источником энергии является звук.

▪️ 2. Гидродинамика пламени. Присмотритесь: в узлах, где пламя самое высокое, скорость истечения газа максимальна. Но это также область, где число Рейнольдса для струйки газа выше. При определённых частотах и расходах можно наблюдать переход от ламинарного пламени к турбулентному прямо внутри одного «столбика» — его основание будет колыхаться.

▪️3. Почему именно стоячая волна? Ключ — в граничных условиях. Труба открыта с обоих концов. Это означает, что на концах должны быть пучности акустического давления (пламя низкое). Значит, в трубе укладывается целое число полуволн. Частота, на которую она «откликается» — это её акустическая мода. Изменяя частоту, мы переключаемся между модами, увеличивая количество «горбов» пламени.

▪️4. Малоизвестный сложный факт: нелинейные эффекты. При больших амплитудах звука (громко крикнуть в динамик недостаточно!) система становится нелинейной. Могут рождаться субгармоники (колебания с частотой в 1/2, 1/3 от основной) и наблюдаться гистерезис — переход между модами происходит при разных частотах в зависимости от того, повышаем мы частоту или понижаем. Это уже область нелинейной акустики и хаоса.

▪️5. Связь с космосом. Явление, родственное тому, что происходит в трубе, изучается в гелиосейсмологии и астросейсмологии. Солнце и звёзды — это гигантские газовые шары, в которых тоже «ходят» акустические (и не только) волны, возбуждаемые конвекцией. Анализируя их моды (частоты), астрофизики определяют внутреннюю структуру светил, как мы определяем свойства трубы по картинке пламени.

Данный опыт демонстрирует наглядную модель процессов, работающих в высокотехнологичных двигателях, холодильниках будущего и в недрах далёких звёзд. #физика #волны #горение #термодинамика #колебания #physics #опыты #science #наука

💦 Вода VS Пламя🔥

🕯Синхронизация и интересный опыт со свечками

🔥 Огонь и горение в космосе 💫

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥5517👍12❤‍🔥61😎1