👨🏻💻 Присоединяйтесь к нашей беседе в VK группе Physics.Math.Code
🗣 Беседа в VK (пригласительная ссылка)
🖥 Обсуждаем там физику, математику, программирование и железо.
💡 Physics.Math.Code // @physics_lib
🗣 Беседа в VK (пригласительная ссылка)
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤17🔥8🤨6👍5🗿4🌚1👨💻1🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
Для эксперимента берут отрезок трубы, перфорированный по всей длине. Один конец подключается к маленькому динамику, а второй — к источнику горючего газа. Труба заполнена горючим газом, так что просачивающийся через отверстия газ горит. Если используется постоянная частота, то в пределах трубы может сформироваться стоячая волна. Когда динамик включен, в трубе формируются области повышенного и пониженного давления. Там, где благодаря звуковым волнам находится область повышенного давления, через отверстия просачивается больше газа и высота пламени больше. Благодаря этому можно измерить длину волны просто измеряя рулеткой расстояние между пиками.
В перфорированной трубе горит газ (пропан). Когда мы подаём на неё звук определённой частоты, в трубе образуется стоячая звуковая волна с чётко выраженными пучностями (максимумы давления) и узлами (минимумы). Пламя реагирует на перепады давления: в пучностях оно ниже (газ выходит хуже), в узлах — выше. Мы видим «замороженную» картинку звука. [
Немного продвинутых фактов:
▪️ 1. Это не просто «огненный график». Труба Рубенса — это термоакустическая система. Звуковая волна совершает работу над газовым пламенем, модулируя его, а реакция пламени (изменение температуры и плотности) в свою очередь влияет на акустические свойства среды. Это простейшая модель для изучения термоакустической неустойчивости — явления, которое может приводить к разрушительным колебаниям в реактивных двигателях или, наоборот, использоваться в экологичных термоакустических холодильниках, где вместо фреона — инертный газ, а источником энергии является звук.
▪️ 2. Гидродинамика пламени. Присмотритесь: в узлах, где пламя самое высокое, скорость истечения газа максимальна. Но это также область, где число Рейнольдса для струйки газа выше. При определённых частотах и расходах можно наблюдать переход от ламинарного пламени к турбулентному прямо внутри одного «столбика» — его основание будет колыхаться.
▪️3. Почему именно стоячая волна? Ключ — в граничных условиях. Труба открыта с обоих концов. Это означает, что на концах должны быть пучности акустического давления (пламя низкое). Значит, в трубе укладывается целое число полуволн. Частота, на которую она «откликается» — это её акустическая мода. Изменяя частоту, мы переключаемся между модами, увеличивая количество «горбов» пламени.
▪️4. Малоизвестный сложный факт: нелинейные эффекты. При больших амплитудах звука (громко крикнуть в динамик недостаточно!) система становится нелинейной. Могут рождаться субгармоники (колебания с частотой в 1/2, 1/3 от основной) и наблюдаться гистерезис — переход между модами происходит при разных частотах в зависимости от того, повышаем мы частоту или понижаем. Это уже область нелинейной акустики и хаоса.
▪️5. Связь с космосом. Явление, родственное тому, что происходит в трубе, изучается в гелиосейсмологии и астросейсмологии. Солнце и звёзды — это гигантские газовые шары, в которых тоже «ходят» акустические (и не только) волны, возбуждаемые конвекцией. Анализируя их моды (частоты), астрофизики определяют внутреннюю структуру светил, как мы определяем свойства трубы по картинке пламени.
Данный опыт демонстрирует наглядную модель процессов, работающих в высокотехнологичных двигателях, холодильниках будущего и в недрах далёких звёзд. #физика #волны #горение #термодинамика #колебания #physics #опыты #science #наука
💦 Вода VS Пламя🔥
🕯Синхронизация и интересный опыт со свечками
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥78❤25👍18❤🔥6😎2⚡1✍1
Media is too big
VIEW IN TELEGRAM
S = 1 + 2 + 3 + ... + 100.
Гаусс, тогда ребёнок примерно 10 лет, практически мгновенно предоставил верный ответ — 5050. Его метод не требовал трудоёмкого последовательного сложения.
Суть открытия. Юный Гаусс осознал, что члены данной арифметической прогрессии можно попарно сгруппировать симметрично относительно центра (или сложить одну сумму с такой же зеркально-симметричной):
1 + 100 = 101
2 + 99 = 101
3 + 98 = 101
...
50 + 51 = 101
Таким образом, исходная сумма есть произведение числа пар (50) на сумму первого и последнего членов (101): S = 50 ⋅ 101 = 5050. Формальное обобщение. Этот частный случай иллюстрирует общую формулу для суммы первых n членов арифметической прогрессии aₖ : Sₙ= (a₁ + aₙ) ⋅ n / 2. В применении к натуральному ряду Sₙ= (n + 1) ⋅ n / 2
Данный эпизод демонстрирует фундаментальный математический принцип: переход от последовательного перебора к симметричному представлению задачи, кардинально снижающему вычислительную сложность. Глубина заключалась не в вычислении конкретного числа, а в мгновенном усмотрении общей структуры, скрытой за частной проблемой. Гауссовский подход является источником методов комбинаторики и теории чисел, а сама формула стала одним из краеугольных камней элементарной математики. Это достижение, пусть и элементарное с современной точки зрения, символизирует рождение мышления, ориентированного на изящность и общность решения, — мышления, которое в полной мере проявится в последующих фундаментальных работах Гаусса по теории чисел, алгебре и дифференциальной геометрии.
📜 Список основных достижений математика:
1. «Арифметические исследования» (Disquisitiones Arithmeticae, 1801). Фундаментальный труд, систематизировавший теорию чисел и поднявший её на уровень строгой науки.
— Теория квадратичных вычетов. Ввёл понятие и фундаментальные свойства сравнений по модулю, доказал квадратичный закон взаимности (названный им «золотой теоремой»), к доказательству которого он дал шесть различных методов.
— Построение правильного 17-угольника. Решил задачу, остававшуюся неразрешённой со времён античности, доказав возможность построения циркулем и линейкой правильного многоугольника с числом сторон, равным простому числу Ферма F_n = 2^(2^n)+1 (для n=2 это 17). Это прямое следствие его открытий в теории уравнений.
2. Анализ и математическая физика:
— Метод наименьших квадратов (1809). Разработан независимо от Лежандра и применён Гауссом для расчёта орбиты астероида Церера, блестяще продемонстрировав свою эффективность. Лёг в основу современной регрессионной обработки данных и теории ошибок.
— Фундаментальная теорема алгебры (доказательство, 1799). Представил строгое доказательство (один из нескольких своих вариантов) теоремы о том, что всякий непостоянный многочлен с комплексными коэффициентами имеет хотя бы один комплексный корень.
3. Дифференциальная геометрия поверхностей (Theorema Egregium, 1828). В работе «Общие исследования о кривых поверхностях» совершил переворот:
— Ввёл параметрическое задание поверхности и первую квадратичную форму (определяющую внутреннюю метрику).
— Доказал Theorema Egregium («Замечательная теорема»): гауссова кривизна поверхности является инвариантом изгибания, то есть зависит только от внутренней геометрии, а не от её погружения в пространство. Это заложило основы современной дифференциальной геометрии и подготовило почву для общей теории относительности.
4. Комплексный анализ:
— Геометрическая интерпретация комплексных чисел. Хотя не был первым, активно и эффективно использовал представление комплексных чисел точками на плоскости, что способствовало их широкому признанию. #математика #теория_чисел #math #алгебра #комбинаторика #опыты #science #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤134🔥57👍28❤🔥5✍3😢2😍2😭2👾1
Media is too big
VIEW IN TELEGRAM
🎄Дорогие друзья, пусть новый год даст вам силы на преодоление всех трудностей, проблем, неприятностей. Physics.Math.Code желает вам успеха, решительности, ясности ума и мотивации. Но мотивация ничто без жесткой дисциплины. Поэтому будьте сильными, будьте дисциплинированными и решительными, никогда не сдавайтесь. Продвигайте науку, изучайте физику, математику и программирование. Стремитесь созидать, а не разрушать. Будьте честными, добрыми скромными. Всем здоровья, любви и мирного неба!
План по созданию светодиодной настольной ёлочки:
▫️ 1. Адресные светодиоды: WS2812B (или NeoPixel) в виде ленты или кольца. Ленту можно нарезать, кольцо — уже готовый «ярус». Хватит 30-60 светодиодов.
▫️ 2. Контроллер: Здесь варианты:
— Arduino Nano/Uno — классика для начала. Дёшево, много готовых скетчей.
— ESP8266 (NodeMCU) / ESP32 — топ-выбор! Позволяет управлять ёлкой по Wi-Fi через веб-интерфейс или даже Telegram-бота. Можно заливать эффекты без проводов.
— Raspberry Pi Pico — мощно и современно, если хочется покодить на MicroPython/C++.
▫️ 3. Питание: Источник 5V. Для 30 светодиодов хватит блока на 2А, для 60+ — на 3-5А. Важно: подключайте питание к ленте напрямую от блока, а не только от контроллера.
▫️ 4. Паяльник, провода, резистор (~220-470 Ом) на линию данных, конденсатор (100-1000 мкФ) на питание ленты для сглаживания скачков.
▫️ 5. Каркас: Медная проволока, плотная фольга, 3D-печатная конструкция или даже картонная конусообразная основа, на которую будет наматываться лента.
▫️ 6. База подключения: 5V с блока питания → на VCC ленты. GND с блока питания → на GND ленты и GND контроллера (общая земля). Пин данных контроллера (например, D4 на ESP8266 или D6 на Arduino) → через резистор ~220 Ом → на DIN первой светодиодной секции. Конденсатор на 100-1000 мкФ параллельно к питанию ленты (плюс к +5V, минус к GND). Если лента длинная (>50 диодов), подключайте питание с двух сторон.
Почему ESP8266/ESP32 — лучший выбор?
▪️ Беспроводное управление: Загружаешь прошивку один раз, а потом меняешь режимы (теплая белая гирлянда, бегущие огоньки, радуга) через браузер.
▪️ Интеграция: Можно привязать к домашней автоматике (Home Assistant), запускать эффекты по таймеру или голосом.
▪️ Огромные библиотеки: FastLED или NeoPixelBus + Web-интерфейс на WLED.
▪️ Используй прошивку WLED — это готовое решение с кучей эффектов и настройкой через Wi-Fi. Прошил — и ёлка готова.
🖥 Код для затравки (Arduino + FastLED):
#электроника #DIY #physics #физика #опыты #схемотехника #science #наука #ардуино #esp8266 #светодиоды
💡 Physics.Math.Code // @physics_lib
План по созданию светодиодной настольной ёлочки:
▫️ 1. Адресные светодиоды: WS2812B (или NeoPixel) в виде ленты или кольца. Ленту можно нарезать, кольцо — уже готовый «ярус». Хватит 30-60 светодиодов.
▫️ 2. Контроллер: Здесь варианты:
— Arduino Nano/Uno — классика для начала. Дёшево, много готовых скетчей.
— ESP8266 (NodeMCU) / ESP32 — топ-выбор! Позволяет управлять ёлкой по Wi-Fi через веб-интерфейс или даже Telegram-бота. Можно заливать эффекты без проводов.
— Raspberry Pi Pico — мощно и современно, если хочется покодить на MicroPython/C++.
▫️ 3. Питание: Источник 5V. Для 30 светодиодов хватит блока на 2А, для 60+ — на 3-5А. Важно: подключайте питание к ленте напрямую от блока, а не только от контроллера.
▫️ 4. Паяльник, провода, резистор (~220-470 Ом) на линию данных, конденсатор (100-1000 мкФ) на питание ленты для сглаживания скачков.
▫️ 5. Каркас: Медная проволока, плотная фольга, 3D-печатная конструкция или даже картонная конусообразная основа, на которую будет наматываться лента.
▫️ 6. База подключения: 5V с блока питания → на VCC ленты. GND с блока питания → на GND ленты и GND контроллера (общая земля). Пин данных контроллера (например, D4 на ESP8266 или D6 на Arduino) → через резистор ~220 Ом → на DIN первой светодиодной секции. Конденсатор на 100-1000 мкФ параллельно к питанию ленты (плюс к +5V, минус к GND). Если лента длинная (>50 диодов), подключайте питание с двух сторон.
Почему ESP8266/ESP32 — лучший выбор?
▪️ Беспроводное управление: Загружаешь прошивку один раз, а потом меняешь режимы (теплая белая гирлянда, бегущие огоньки, радуга) через браузер.
▪️ Интеграция: Можно привязать к домашней автоматике (Home Assistant), запускать эффекты по таймеру или голосом.
▪️ Огромные библиотеки: FastLED или NeoPixelBus + Web-интерфейс на WLED.
▪️ Используй прошивку WLED — это готовое решение с кучей эффектов и настройкой через Wi-Fi. Прошил — и ёлка готова.
#include <FastLED.h>
#define NUM_LEDS 48
#define DATA_PIN 6
CRGB leds[NUM_LEDS];
void setup() { FastLED.addLeds<WS2812B, DATA_PIN, GRB>(leds, NUM_LEDS); }
void loop() {
// Простой бегущий огонёк
for(int i = 0; i < NUM_LEDS; i++) {
leds[i] = CRGB::Green;
FastLED.show();
delay(50);
leds[i] = CRGB::Black;
}
}
#электроника #DIY #physics #физика #опыты #схемотехника #science #наука #ардуино #esp8266 #светодиоды
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤122👍30🔥18🙏5🥰4⚡3👏3🗿3💯2😍1
🔊 Узоры стоячих волн — фигуры Хладни 〰️
В данном эксперименте мы наблюдаем визуализацию звука по конфигурации стоячих волн, в узлы которых попадают кристаллики соли, вырисовывая картину колебания. С увеличением частоты геометрические узоры из соли меняют свою форму и становятся более сложными.
Предлагаем посмотреть на современную реализацию эксперимента, который повторяет «открытие» немецкого ученого Эрнеста Хладни. Он исследовал влияние вибраций разных частот на механические поверхности, водя смычком вдоль края пластины (пластины Хладни), покрытой мукой, заметил как изменяется ее форма. Свои наблюдения изложил в книге «Теория Звука». В 1960-х Ханс Дженни расширил работы Хладни, используя различные жидкости и электронные усилители для генерирования различных звуковых частот. Он же заодно и ввел термин «киматика».
Если вы пропустите обычную синусоидную волну через тарелку с водой, то вы увидите узор прямо на воде. В зависимости от частоты волн будут появляться различные изображения пульсаций. Чем выше частота, тем более сложными становятся узоры. Эти формы являются повторяющимися и отнюдь не случайными. Вибрация организует материю в сложные формы, получаемые из простых и повторяющихся волн. #механика #физика #наука #physics #колебания #science #волны #physics
CYMATICS׃ Science Vs Music — Nigel Stanford
Воздействие звуковых волн различных частот на соль
💡 Physics.Math.Code // @physics_lib
В данном эксперименте мы наблюдаем визуализацию звука по конфигурации стоячих волн, в узлы которых попадают кристаллики соли, вырисовывая картину колебания. С увеличением частоты геометрические узоры из соли меняют свою форму и становятся более сложными.
Предлагаем посмотреть на современную реализацию эксперимента, который повторяет «открытие» немецкого ученого Эрнеста Хладни. Он исследовал влияние вибраций разных частот на механические поверхности, водя смычком вдоль края пластины (пластины Хладни), покрытой мукой, заметил как изменяется ее форма. Свои наблюдения изложил в книге «Теория Звука». В 1960-х Ханс Дженни расширил работы Хладни, используя различные жидкости и электронные усилители для генерирования различных звуковых частот. Он же заодно и ввел термин «киматика».
Если вы пропустите обычную синусоидную волну через тарелку с водой, то вы увидите узор прямо на воде. В зависимости от частоты волн будут появляться различные изображения пульсаций. Чем выше частота, тем более сложными становятся узоры. Эти формы являются повторяющимися и отнюдь не случайными. Вибрация организует материю в сложные формы, получаемые из простых и повторяющихся волн. #механика #физика #наука #physics #колебания #science #волны #physics
CYMATICS׃ Science Vs Music — Nigel Stanford
Воздействие звуковых волн различных частот на соль
💡 Physics.Math.Code // @physics_lib
👍36🔥14❤11😍3⚡1🤯1🤩1
Рассмотренная выше формула с бесконечно повторяющимися радикалами являются частным случаем более общей формулы:
📝 Подробнее
Источник, где эта формула выводится более строго: A. Herschfeld, On Infinite Radicals, American Mathematical Monthly 42 (1935), no. 7, 420–421.
#math #математика #наука #алгебра #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤67👍31🔥23🤨7❤🔥2🤔2
📚 Сборник задач по общему курсу физики [1976 - 1981] Сивухин Д.В. В настоящем издании сборник выходит в пяти книгах, каждая из которых может быть использована самостоятельно.
💾 Скачать книги
📐 Без чего не заходить: необходимый математический минимум. Сивухин математически строг. Без этого его прелесть теряется. Итак, нужно уверенно знать:
▫️ Математический анализ: Пределы, производные (включая частные), интегралы (кратные, криволинейные, поверхностные) — это самое важное! Уравнения в полных дифференциалах.
▫️ Векторный анализ: Градиент, дивергенция, ротор, теоремы Стокса и Гаусса-Остроградского. В электродинамике (том 3) без этого — никуда.
▫️ Дифференциальные уравнения: Уметь решать простые ДУ первого и второго порядка. Понимать, что такое уравнение в частных производных (хотя бы для волнового уравнения).
▫️ Линейная алгебра: Векторы, матрицы, операции с ними, понятие собственных значений (для тензоров инерции и т.д.).
▫️ Основы теории поля (для электродинамики и ОТО в 5-ом томе).
Совет: Держите под рукой справочник по матану или курс типа «Математика для физиков» (Арфкена, Бохана). Сивухин часто отсылает к математическому аппарату.
Дмитрий Васильевич Сивухин (1914 — 1988) — советский физик, автор широко известного «Общего курса физики». Кандидат физико-математических наук, профессор МФТИ. Автор статей по гидродинамике, статистической физике, физической оптике, физике плазмы, электродинамике.
Поддержать канал чашкой кофе ☕️:
ВТБ:
🎯 Кому подойдет Сивухин?
▪️ 1. Студенты физфаков и технических вузов (от 2 курса и старше). Это идеальный сопутствующий материал к основным лекциям. Если в учебнике Кузнецова или Иродова что-то пролетело мимо — Сивухин разжует. Он не заменяет краткий конспект перед зачетом, он углубляет понимание.
▪️2. Аспиранты и молодые ученые. Забыли раздел оптики или термодинамики? Нужно восстановить строгую базу без воды. Сивухин — ваш «справочник с душой», где каждая формула выводится, а не постулируется.
▪️3. Преподаватели и инженеры-исследователи. Бесценный источник ясных объяснений, удачных аналогий и нестандартных задач для семинаров. Хотите понять суть явления, чтобы потом просто объяснить студентам? Сивухин ваш выбор.
▪️4. Самые упорные и любознательные самоучки. Это сложный путь, но самый rewarding (вознаграждающий). Если вы из тех, кого не пугают интегралы, а радуют красивые выводы — добро пожаловать. #физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
📐 Без чего не заходить: необходимый математический минимум. Сивухин математически строг. Без этого его прелесть теряется. Итак, нужно уверенно знать:
▫️ Математический анализ: Пределы, производные (включая частные), интегралы (кратные, криволинейные, поверхностные) — это самое важное! Уравнения в полных дифференциалах.
▫️ Векторный анализ: Градиент, дивергенция, ротор, теоремы Стокса и Гаусса-Остроградского. В электродинамике (том 3) без этого — никуда.
▫️ Дифференциальные уравнения: Уметь решать простые ДУ первого и второго порядка. Понимать, что такое уравнение в частных производных (хотя бы для волнового уравнения).
▫️ Линейная алгебра: Векторы, матрицы, операции с ними, понятие собственных значений (для тензоров инерции и т.д.).
▫️ Основы теории поля (для электродинамики и ОТО в 5-ом томе).
Совет: Держите под рукой справочник по матану или курс типа «Математика для физиков» (Арфкена, Бохана). Сивухин часто отсылает к математическому аппарату.
Дмитрий Васильевич Сивухин (1914 — 1988) — советский физик, автор широко известного «Общего курса физики». Кандидат физико-математических наук, профессор МФТИ. Автор статей по гидродинамике, статистической физике, физической оптике, физике плазмы, электродинамике.
Поддержать канал чашкой кофе ☕️:
ВТБ:
+79616572047 (СБП) 🎯 Кому подойдет Сивухин?
▪️ 1. Студенты физфаков и технических вузов (от 2 курса и старше). Это идеальный сопутствующий материал к основным лекциям. Если в учебнике Кузнецова или Иродова что-то пролетело мимо — Сивухин разжует. Он не заменяет краткий конспект перед зачетом, он углубляет понимание.
▪️2. Аспиранты и молодые ученые. Забыли раздел оптики или термодинамики? Нужно восстановить строгую базу без воды. Сивухин — ваш «справочник с душой», где каждая формула выводится, а не постулируется.
▪️3. Преподаватели и инженеры-исследователи. Бесценный источник ясных объяснений, удачных аналогий и нестандартных задач для семинаров. Хотите понять суть явления, чтобы потом просто объяснить студентам? Сивухин ваш выбор.
▪️4. Самые упорные и любознательные самоучки. Это сложный путь, но самый rewarding (вознаграждающий). Если вы из тех, кого не пугают интегралы, а радуют красивые выводы — добро пожаловать. #физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
👍34❤22🔥8❤🔥1🥰1
📚_Сборник_задач_по_общему_курсу_физики_1976_2006_Сивухин_Д_В_.zip
88.2 MB
📚 Сборник задач по общему курсу физики [1976 - 2006] Сивухин Д.В.
В предлагаемом сборнике задач по физике использован опыт преподавания общего курса физики в МГУ, Московском физико-техническом институте и Московском государственном педагогическом институте им. В.И.Ленина. Сивухин Д.В. Общий курс физики в 5 томах. По степени трудности задачи охватывают широкий диапазон: от самых элементарных до задач, стоящих на уровне оригинальных научных исследований, выполнение которых возможно на основе углубленного знания общего курса физики. Для студентов физических специальностей высших учебных заведений. Составление этого сборника задач было начато на физическом факультете МГУ по инициативе академика С. И. Вавилова. Однако основная работа по составлению Сборника и подготовке его к изданию выполнена под руководством С. Э. Хайкина. В 1949 г. вышло в свет первое издание Сборника в двух частях: I. Механика. Электричество и магнетизм, под редакцией С. Э. Хайкина; II. Оптика. Молекулярная физика и термодинамика. Атомная физика и физика ядра, под редакцией Д. В. Сивухина. С тех пор Сборник переиздавался в 1960 и 1964 гг.
Предлагаемое, четвертое, издание Сборника существенно отличается от всех предшествующих прежде всего по своему объему, так как число задач, включенных в Сборник, увеличено почти вдвое. Обогатилось содержание и повысился уровень задач. По степени трудности, постановки и решения задачи охватывают широкий диапазон: от самых элементарных до задач, стоящих на уровне оригинальных научных исследований, выполнение которых возможно на основе углубленного знания общего курса физики.
📔 Том 1. Механика. Издание второе, исправленное, 1979.
📕 Том 2. Термодинамика и молекулярная физика. Издание второе, исправленное, 1979.
📗 Том 3. Электричество. Издание второе, исправленное, 1983.
📘 Том 4. Оптика. 1980.
📙 Том 5. Атомная и ядерная физика:
▪️Часть 1. Атомная физика. 1986.
▪️Часть 2. Ядерная физика. 1989.
💡 Physics.Math.Code // @physics_lib
В предлагаемом сборнике задач по физике использован опыт преподавания общего курса физики в МГУ, Московском физико-техническом институте и Московском государственном педагогическом институте им. В.И.Ленина. Сивухин Д.В. Общий курс физики в 5 томах. По степени трудности задачи охватывают широкий диапазон: от самых элементарных до задач, стоящих на уровне оригинальных научных исследований, выполнение которых возможно на основе углубленного знания общего курса физики. Для студентов физических специальностей высших учебных заведений. Составление этого сборника задач было начато на физическом факультете МГУ по инициативе академика С. И. Вавилова. Однако основная работа по составлению Сборника и подготовке его к изданию выполнена под руководством С. Э. Хайкина. В 1949 г. вышло в свет первое издание Сборника в двух частях: I. Механика. Электричество и магнетизм, под редакцией С. Э. Хайкина; II. Оптика. Молекулярная физика и термодинамика. Атомная физика и физика ядра, под редакцией Д. В. Сивухина. С тех пор Сборник переиздавался в 1960 и 1964 гг.
Предлагаемое, четвертое, издание Сборника существенно отличается от всех предшествующих прежде всего по своему объему, так как число задач, включенных в Сборник, увеличено почти вдвое. Обогатилось содержание и повысился уровень задач. По степени трудности, постановки и решения задачи охватывают широкий диапазон: от самых элементарных до задач, стоящих на уровне оригинальных научных исследований, выполнение которых возможно на основе углубленного знания общего курса физики.
📔 Том 1. Механика. Издание второе, исправленное, 1979.
📕 Том 2. Термодинамика и молекулярная физика. Издание второе, исправленное, 1979.
📗 Том 3. Электричество. Издание второе, исправленное, 1983.
📘 Том 4. Оптика. 1980.
📙 Том 5. Атомная и ядерная физика:
▪️Часть 1. Атомная физика. 1986.
▪️Часть 2. Ядерная физика. 1989.
💡 Physics.Math.Code // @physics_lib
❤22👍18❤🔥4🔥4🤯2🤩1
Давление света, предсказанное Максвеллом в рамках классической электродинамики и объяснённое Эйнштейном через квантовую природу излучения, часто воспринимается как сугубо теоретический эффект с пренебрежимо малой силой. Однако это фундаментальное проявление передачи импульса электромагнитным полем. Представим ключевые факты и демонстрации.
1. Качели Лебедева сегодня. В 1899 году П.Н. Лебедев впервые измерил давление света на твёрдые тела в вакууме, используя крутильные весы. Современные аналоги этого эксперимента — оптические пинцеты, где давление лазерного света удерживает и перемещает микроскопические частицы и даже живые клетки. Это прямое применение в биофизике.
2. Сила отталкивания может превзойти силу притяжения. Для частиц с высоким коэффициентом отражения давление света может доминировать над гравитацией. Это лежит в основе концепции солнечного паруса. Расчеты показывают, что космический аппарат с парусом площадью 1000 м² у орбиты Земли получит ускорение порядка 1 мм/с² — ничтожно малое, но непрерывное, позволяющее достичь огромных скоростей без расхода рабочего тела.
3. Давление внутри звезды. В астрофизике световое давление — критический фактор уравновешивания. В недрах звёзд оно, наряду с газовым давлением, противостоит гравитационному коллапсу. В массивных звёздах вклад радиационного давления становится доминирующим, что влияет на их устойчивость и эволюцию.
4. Одностороннее давление при отражении. Импульс, передаваемый поверхности при отражении фотона, в два раза превышает импульс при его поглощении (с учётом изменения импульса на противоположный). Поэтому идеальное зеркало в вакууме испытывает вдвое большее давление, чем идеально чёрное тело при той же интенсивности света.
Строгие экспериментальные демонстрации:
▫️ Опыт с вакуумным радиометром Крукса. Классический сувенирный «световой мельничный» двигатель с частичным вакуумом часто ошибочно объясняют давлением света. На самом деле вращение вызывается остаточными газами (термофорез). Однако в условиях глубокого вакуума (порядка 10⁻⁵ Па и ниже) эффект от газов исчезает, и можно наблюдать чистое радиационное давление, заставляющее лопасти двигаться от источника света (если они зачернены с одной стороны). Это прямой лабораторный опыт для продвинутых практикумов.
▫️ Лазерное смещение маятника. Современная версия опыта Лебедева: лёгкое зеркальце, подвешенное в качестве маятника в вакуумированной камере. При падении на него импульса от мощного лазера наблюдается отклонение, регистрируемое, например, лазерным указателем и линейкой. Требует исключения тепловых и конвекционных эффектов.
▫️ Оптическая левитация. Монохроматический свет мощного лазера, направленный вертикально вверх, может удерживать в воздухе микроскопические прозрачные диэлектрические сферы (например, из латекса). Частица находится в точке равновесия, где сила светового давления вверх компенсирует силу тяжести. Наглядная демонстрация баланса импульсов.
Давление света — не абстракция, а измеряемая сила, играющая роль в технологиях (оптические ловушки, управление спутниками), объясняющая процессы в звёздах и подтверждающая фундаментальные принципы сохранения энергии-импульса. Его изучение лежит на стыке волновой и квантовой теорий. #физика #оптика #давлениесвета #эксперимент #астрофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍35🔥17❤14⚡3
This media is not supported in your browser
VIEW IN TELEGRAM
🌀 Полное внутреннее отражение и световодный эффект в струе жидкости
Классическая лекционная демонстрация, в которой лазерный луч, введенный в вытекающую струю воды, изгибается вместе с ней, не покидая её границ, является наглядной иллюстрацией фундаментального явления — полного внутреннего отражения (ПВО).
Физическая основа: Луч, распространяясь в воде (оптически более плотной среде, n ≈ 1.33), падает на границу раздела «вода-воздух» (менее плотная среда, n ≈ 1) под углом, превышающим критический угол. Для данной границы он составляет около 48.8°. При этом условии свет не преломляется, а отражается обратно в воду практически без потерь. В изогнутой струе это условие выполняется многократно по всей её длине. Вода действует как оптический волновод, удерживая излучение. Для четкого наблюдения эффекта необходим коллимированный источник (лазер), прозрачная ёмкость с отверстием (≈1-3 мм) и добавка в воду для увеличения контраста (например, флуоресцеин). При ламинарном истечении струи луч будет виден по всей её длине, резко обрываясь в месте распада на капли. Простая струя воды становится лабораторией для демонстрации ключевых принципов волноводной оптики, квантовой аналогии и нелинейной динамики.
5 интересных фактов в углубленной физике процесса:
▪️1. Роль поверхностных волн и шероховатости. Идеальность ПВО и, соответственно, низкие потери в таком «водяном световоде» возможны лишь при гладкой поверхности струи. При турбулентности или каплеобразовании возникают микронарушения границы, приводящие к рассеянию Ми и модовому преобразованию. Это прямо аналогично проблемам в волоконной оптике.
▪️2. Эффект туннелирования фотонов (фрустрированное полное внутреннее отражение). Если в область отражения вплотную к струе поднести другой предмет (например, стеклянную пластину), условие ПВО нарушается. Часть излучения «просачивается» в эту внешнюю среду через потенциальный барьер — это оптический аналог квантового туннельного эффекта.
▪️3. Не только вода. Аналогичный эксперимент возможен с прозрачными сиропами или полимерными жидкостями с более высоким показателем преломления. Это увеличит критический угол и расширит допустимую кривизну струи до её разрушения на капли.
▪️4. Исторический контекст. Принцип световода был впервые продемонстрирован Жан-Даниэлем Колладоном и Джоном Тиндалем еще в XIX веке (задолго до изобретения лазера) с помощью солнечного света и изогнутой водяной струи. Это фундаментальное явление легло в основу современной волоконной оптики.
▪️5. Связь с каустиками. Траектории лучей внутри изогнутой струи формируют сложные каустические поверхности — области повышенной концентрации световой энергии. Их структура может быть рассчитана методами геометрической оптики и является предметом изучения теории катастроф. #физика #волны #цвет #наука #электродинамика #оптика #физика #physics
💡 Physics.Math.Code // @physics_lib
Классическая лекционная демонстрация, в которой лазерный луч, введенный в вытекающую струю воды, изгибается вместе с ней, не покидая её границ, является наглядной иллюстрацией фундаментального явления — полного внутреннего отражения (ПВО).
Физическая основа: Луч, распространяясь в воде (оптически более плотной среде, n ≈ 1.33), падает на границу раздела «вода-воздух» (менее плотная среда, n ≈ 1) под углом, превышающим критический угол. Для данной границы он составляет около 48.8°. При этом условии свет не преломляется, а отражается обратно в воду практически без потерь. В изогнутой струе это условие выполняется многократно по всей её длине. Вода действует как оптический волновод, удерживая излучение. Для четкого наблюдения эффекта необходим коллимированный источник (лазер), прозрачная ёмкость с отверстием (≈1-3 мм) и добавка в воду для увеличения контраста (например, флуоресцеин). При ламинарном истечении струи луч будет виден по всей её длине, резко обрываясь в месте распада на капли. Простая струя воды становится лабораторией для демонстрации ключевых принципов волноводной оптики, квантовой аналогии и нелинейной динамики.
5 интересных фактов в углубленной физике процесса:
▪️1. Роль поверхностных волн и шероховатости. Идеальность ПВО и, соответственно, низкие потери в таком «водяном световоде» возможны лишь при гладкой поверхности струи. При турбулентности или каплеобразовании возникают микронарушения границы, приводящие к рассеянию Ми и модовому преобразованию. Это прямо аналогично проблемам в волоконной оптике.
▪️2. Эффект туннелирования фотонов (фрустрированное полное внутреннее отражение). Если в область отражения вплотную к струе поднести другой предмет (например, стеклянную пластину), условие ПВО нарушается. Часть излучения «просачивается» в эту внешнюю среду через потенциальный барьер — это оптический аналог квантового туннельного эффекта.
▪️3. Не только вода. Аналогичный эксперимент возможен с прозрачными сиропами или полимерными жидкостями с более высоким показателем преломления. Это увеличит критический угол и расширит допустимую кривизну струи до её разрушения на капли.
▪️4. Исторический контекст. Принцип световода был впервые продемонстрирован Жан-Даниэлем Колладоном и Джоном Тиндалем еще в XIX веке (задолго до изобретения лазера) с помощью солнечного света и изогнутой водяной струи. Это фундаментальное явление легло в основу современной волоконной оптики.
▪️5. Связь с каустиками. Траектории лучей внутри изогнутой струи формируют сложные каустические поверхности — области повышенной концентрации световой энергии. Их структура может быть рассчитана методами геометрической оптики и является предметом изучения теории катастроф. #физика #волны #цвет #наука #электродинамика #оптика #физика #physics
💡 Physics.Math.Code // @physics_lib
🔥50👍16❤15✍6⚡1
Отличный бесплатный конспект по LLM на русском языке
Праздники не такие длинные, как кажется. Будет жалко, если они снова пройдут бесполезно, потому что это, очевидно, лучшее время для развития.
В общем, пора поделиться с вами вот этим свежим конспектом. Очень качественная подача материала, емко, интересно и с множеством прекрасных схем и картинок. Внутри:
– Необходимая математика: линал и матанализ на пальцах
– Все про механизм внимания и трансформеры
– Детальное объяснение процесса предобучения (а это редкость)
– RL – с нуля до обучения ризонинг-моделей
– Полноценный гайд по тому, как зафайнтюнить модель
Всего 6 глав и 50 страниц – идеальный объем, чтобы осилить за выходные и понять принцип работы современных моделей. Сохраняйте сейчас и не откадывайте в долгий ящик.
Забрать полную pdf-версию абсолютно бесплатно можно здесь
Праздники не такие длинные, как кажется. Будет жалко, если они снова пройдут бесполезно, потому что это, очевидно, лучшее время для развития.
В общем, пора поделиться с вами вот этим свежим конспектом. Очень качественная подача материала, емко, интересно и с множеством прекрасных схем и картинок. Внутри:
– Необходимая математика: линал и матанализ на пальцах
– Все про механизм внимания и трансформеры
– Детальное объяснение процесса предобучения (а это редкость)
– RL – с нуля до обучения ризонинг-моделей
– Полноценный гайд по тому, как зафайнтюнить модель
Всего 6 глав и 50 страниц – идеальный объем, чтобы осилить за выходные и понять принцип работы современных моделей. Сохраняйте сейчас и не откадывайте в долгий ящик.
Забрать полную pdf-версию абсолютно бесплатно можно здесь
👍28🔥10❤9🗿7😨4🤷♂3😱3🌚3🙈3❤🔥1👨💻1