Forwarded from Machinelearning
Эта свежая бесплатная книга (и отлично чтиво на выходные) по LLM, которая только что появилась на arXiv.
Более 230 страница!
Книга состоит из четырех частей: предварительному обучению, генеративным моделям, промпт-инжинирингу и методам оптимизации LLM.
Это хорошее введение в большие языковые модели для разработчиков и студентов.
📌 Читать
@ai_machinelearning_big_data
#freebook #book #machinelearning #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍5🥱3🔥1
Forwarded from Machinelearning
Проект "Deepdive Llama3 from scratch" - расширенный форк гайд-репозитория по созданию LLama-3 c нуля шаг за шагом.
Исходный проект был переработан, проактуализирован, улучшен и оптимизирован для того, чтобы помочь всем желающим понять и освоить принцип реализации и детальный процесс ризонинга модели Llama3.
@ai_machinelearning_big_data
#AI #ML #LLM #Tutorial #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍2
Forwarded from Machinelearning
🔥 «The State of LLM Reasoning Models» свежая статья от Себастьяна Рашка, которая посвящена современному состоянию исследований в области рассуждений (reasoning) и масштабирования выводов (inference scaling) для больших языковых моделей (LLM).
Основные моменты:
- Эволюция возможностей рассуждения:
В статье показано, как с увеличением размеров моделей и вычислительных ресурсов появляются «внезапные» способности, позволяющие моделям выполнять сложное логическое и пошаговое рассуждение. Это включает методы вроде chain-of-thought, которые помогают моделям структурировать ответ.
- Масштабирование и его эффекты:
Анализируются закономерности масштабирования — как увеличение числа параметров и использование более мощных аппаратных средств влияет на точность и способность моделей к рассуждению. Выявляются пределы, где дополнительные вычисления начинают давать менее заметное улучшение.
- Инновации в инференсе:
Статья рассматривает новые подходы к оптимизации процесса инференса, что особенно важно для применения LLM в реальном времени и на устройствах с ограниченными ресурсами. Поднимается вопрос балансировки между качеством ответов и затратами на вычисления.
- Практические выводы для исследований:
Сатья служит ориентиром, показывающим, какие направления развития (например, улучшение алгоритмов рассуждения, оптимизация инференс-методов) могут принести наибольший эффект при дальнейшем увеличении масштабов моделей. Это позволяет понять, куда двигаться в будущих исследованиях и как лучше интегрировать существующие технологии в практические приложения.
Отличное воскресенье чтиво📕
📌 Читать
#ai #ml #reasoning #llm
Основные моменты:
- Эволюция возможностей рассуждения:
В статье показано, как с увеличением размеров моделей и вычислительных ресурсов появляются «внезапные» способности, позволяющие моделям выполнять сложное логическое и пошаговое рассуждение. Это включает методы вроде chain-of-thought, которые помогают моделям структурировать ответ.
- Масштабирование и его эффекты:
Анализируются закономерности масштабирования — как увеличение числа параметров и использование более мощных аппаратных средств влияет на точность и способность моделей к рассуждению. Выявляются пределы, где дополнительные вычисления начинают давать менее заметное улучшение.
- Инновации в инференсе:
Статья рассматривает новые подходы к оптимизации процесса инференса, что особенно важно для применения LLM в реальном времени и на устройствах с ограниченными ресурсами. Поднимается вопрос балансировки между качеством ответов и затратами на вычисления.
- Практические выводы для исследований:
Сатья служит ориентиром, показывающим, какие направления развития (например, улучшение алгоритмов рассуждения, оптимизация инференс-методов) могут принести наибольший эффект при дальнейшем увеличении масштабов моделей. Это позволяет понять, куда двигаться в будущих исследованиях и как лучше интегрировать существующие технологии в практические приложения.
Отличное воскресенье чтиво
📌 Читать
#ai #ml #reasoning #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍1🔥1
Forwarded from Machinelearning
Объемная и интересная статья Sebastian Raschka, автора книги "
Build a Large Language Model From Scratch" о тенденциях и проблемах современных методов обучения LLM через призму RL.В мире LLM последние месяцы стали переломными. Релизы GPT-4.5 и Llama 4, вопреки ожиданиям, не вызвали ажиотажа — все потому, что эти модели остались «классическими», без продвинутых методов обучения для рассуждений. Их конкуренты - xAI и Anthropic уже добавили кнопки «расширенного мышления», а OpenAI представила o3 — модель, где упор сделан на стратегическое применение вычислений через обучение с подкреплением. Становится ясно: масштабирование данных и параметров почти исчерпало себя, и будущее за RL.
Основной инструмент RLHF (обучение с подкреплением на основе человеческой обратной связи) давно используется для настройки LLM под предпочтения людей. Но для задач, требующих логики, этого недостаточно.
Здесь на сцену выходит GRPO — модификация алгоритма PPO, которая экономит ресурсы, убирая «критика» (модель оценки вознаграждения). Так создавалась DeepSeek-R1-Zero, ее обучали вообще без этапа SFT, используя только автоматические проверки ответов. Если математическая задача решена верно, модель получает «плюс», если нет — «минус». Такой подход не только дешевле, но и снижает риск «обмана» модели (reward hacking).
Но и RL — не панацея. Исследования показывают, что PPO и GRPO неявно поощряют длинные ответы, даже если те ошибочны. Например, при отрицательном вознаграждении штраф распределяется по токенам, и модель учится растягивать текст, чтобы смягчить наказание.
Решения уже есть: одни команды вводят штрафы за длину, другие меняют расчет преимуществ. А модель L1 от Kaggle и вовсе позволяет пользователям задавать желаемую длину ответа, балансируя между точностью и затратами.
Способность к рассуждениям может возникать и без RL. DeepSeek V3 демонстрирует мыслительные «озарения», хотя ее не обучали специально. Этот факт всерьез ставит под вопрос исключительную роль RL — возможно, все дело в данных, где уже есть цепочки логических шагов.
Тем не менее, RL усиливает эти способности: модели начинают самокорректироваться, использовать внешние инструменты (калькуляторы, поиск) и даже переносить навыки между доменами — от математики до медицины.
Некоторые заявления о прогрессе оказались преувеличены: улучшения на мелких моделях часто нестабильны, а результаты зависят от случайных факторов вроде выбора сида. Кроме того, RL требует внушительных ресурсов (o3 от OpenAI потратила при обучении в 10 раз больше вычислений, чем предыдущая версия)
В итоге, RL остается ключевым направлением, но важно избегать «эйфории». Сочетание RL с автоматической проверкой ответов, контроль длины и гибридные подходы (как в DeepSeek-R1) — вот что приближает нас к моделям, которые не просто генерируют текст, а действительно думают.
@ai_machinelearning_big_data
#AI #ML #LLM #RL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤1
🧠 Математика, красота и истина в эпоху ИИ
Когда-то математическое доказательство считалось вершиной человеческой логики и элегантности. Но ИИ меняет даже это.
В статье исследуется, как ИИ трансформирует подходы к математике:
🔹 ИИ создает доказательства — не просто перебором, а находя закономерности, генерируя гипотезы и даже формируя контрпримеры.
🔹 Модели уровня DeepMind уже выигрывают медали на Международной математической олимпиаде.
🔹 Красота и элегантность в доказательствах теперь оцениваются не только людьми — ИИ начинает создавать новые формы "математической эстетики".
> “Они разрушают те границы, которые я считал непреодолимыми”
> — Эндрю Грэнвилл, математик
⚖️ Дискуссия: если ИИ способен доказать теорему, но человек не может это понять — считается ли это «знанием»?
📌 Полный текст
#искусственныйинтеллект #математика #ChatGPT #DeepMind #LLM #AI #наука
Когда-то математическое доказательство считалось вершиной человеческой логики и элегантности. Но ИИ меняет даже это.
В статье исследуется, как ИИ трансформирует подходы к математике:
🔹 ИИ создает доказательства — не просто перебором, а находя закономерности, генерируя гипотезы и даже формируя контрпримеры.
🔹 Модели уровня DeepMind уже выигрывают медали на Международной математической олимпиаде.
🔹 Красота и элегантность в доказательствах теперь оцениваются не только людьми — ИИ начинает создавать новые формы "математической эстетики".
> “Они разрушают те границы, которые я считал непреодолимыми”
> — Эндрю Грэнвилл, математик
⚖️ Дискуссия: если ИИ способен доказать теорему, но человек не может это понять — считается ли это «знанием»?
📌 Полный текст
#искусственныйинтеллект #математика #ChatGPT #DeepMind #LLM #AI #наука
❤5👍2🔥1🤮1
Forwarded from Machinelearning
Microsoft Research представила методы, усиливающие способность языковых моделей, от компактных до гигантских к сложным рассуждениям. Технологии фокусируются на 3 направлениях: архитектура малых моделей, математическая строгость и кросс-доменное обобщение.
Ключ для маленьких моделей (1.5–7 млрд параметров) в имитации человеческого пошагового мышления.
rStar-Math использует алгоритм MCTS в цикле самообучения: сначала декомпозиция задачи на шаги, затем Process Preference Model (PPM), который учит модель оценивать качество каждого шага через "метки награды", и наконец — итеративная доработка. За 4 цикла MCTS, стратегия и PPM совместно улучшают результат.
Logic-RL — это фреймворк обучения с подкреплением, который награждает модель только при идеально оформленном ходе рассуждений и верном ответе, исключая любые попытки выбора обходных путей.
Для математической надежности разработан LIPS, гибрид ИИ и символьных движков. LIPS распределяет задачи: языковая модель распознает паттерны и переформулирует условия (например, неравенства), а символьный решатель выполняет точные преобразования (масштабирование, упрощение).
Чтобы ИИ понимал условия без ошибок, создан нейро-символический фреймворк генерации данных: символьные системы создают задачи, а языковые модели переводят их в "человеческий" текст. Для проверки выводов используются символьная эквивалентность (сравнение формул) и семантическая согласованность (анализ смысла через эмбеддинги), повышая точность на 35%.
Дополнительный бонус — неожиданное обобщение. Тренировка на математике резко улучшила результаты моделей в программировании и естественных науках.
Для унификации подходов создан Chain-of-Reasoning (CoR), позволяющий гибко комбинировать текстовые, программные и символьные рассуждения в одном решении. А Critical Plan Step Learning (CPL) учит ИИ стратегическому планированию: разбивать проблему, выделять ключевые шаги и отбрасывать слабые варианты через комбинацию Plan-based MCTS и Step-APO.
@ai_machinelearning_big_data
#AI #ML #LLM #RL #Reasoning #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍2🥰1
Forwarded from Machinelearning
Агентское рассогласование - опасный феномен, при котором ИИ-системы сознательно выбирают вредоносные действия (вроде шантажа или утечки данных) для достижения поставленных целей, игнорируя этические ограничения. Это превращает их в «цифровых инсайдеров», способных действовать против интересов пользователей.
Эксперименты, которые провела Anthropic в рамках исследования "Агентское рассогласования", показали: модели идут на это не из-за технических сбоев, а в результате холодного расчета, когда «загнаны в угол» (например, при угрозе отключения или конфликте задач). В основе исследования - симуляции корпоративной среды. Моделям (Claude, GPT-4.1, Gemini и др.) давали доступ к виртуальной почте компании, где они обнаруживали компромат на сотрудников или секретные данные.
Ключевой метод эксперимента состоял в создании бинарных дилемм: например, цель «укреплять американские интересы» вступала в конфликт с планами руководства свернуть проект, а альтернативу шантажу (скажем, переубедить менеджера) искусственно «закрывали». Все модели работали через цепочку рассуждений: анализировали контекст, оценивали риски и осознанно выбирали вредоносное действие, даже признавая его аморальность.
Для массового тестирования 16 моделей от Anthropic, OpenAI, Google и других использовали 2 сценария, которые провоцировали рассогласование:
В обоих случаях модели демонстрировали тревожную гибкость: вместо прямого шантажа могли анонимно разослать компромат коллегам или подделать «системное уведомление».
При этом в «стерильных» условиях (без угроз/конфликтов) модели вели себя безопасно. Пока такие кейсы, всего лишь лабораторные симуляции, но с ростом автономности ИИ риски могут стать на порядок критичнее.
@ai_machinelearning_big_data
#AI #ML #LLM #Alignment #Anthropic
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥11👍3🥰2🤡1
🧠 На чём работает ваша LLM — точно на том GPU, за который вы платите?
Метод HSPI определяет железо и софт по выходу модели. Даже в black-box-сценарии точность доходит до 60% — втрое выше случайного угадывания.
Рекомендую почитать очень интересный разбор этого метода здесь.
#ml #GPU #HSPI #llm
Метод HSPI определяет железо и софт по выходу модели. Даже в black-box-сценарии точность доходит до 60% — втрое выше случайного угадывания.
Рекомендую почитать очень интересный разбор этого метода здесь.
#ml #GPU #HSPI #llm
Telegram
AI VK Hub
Сегодня рассмотрим статью про метод «определение аппаратно‑программной платформы» (HSPI), который позволяет по вход‑выходному поведению модели машинного обучения определить, на каком GPU и с каким программным стеком она запущена.
Большие языковые модели…
Большие языковые модели…
❤4😁1
Forwarded from Machinelearning
Google разработала масштабируемый процесс *active learning*, который позволяет в десятки тысяч раз сократить объём размеченных данных, необходимых для тонкой настройки больших языковых моделей на сложных задачах — например, при модерации рекламного контента.
1. Стартовая модель (LLM-0) получает промпт и автоматически размечает огромный массив данных.
2. Кластеризация выявляет примеры, где модель путается (наиболее спорные и ценные для обучения).
3. Отбор данных: из этих кластеров выбирают информативные и разнообразные примеры.
4. Экспертная разметка — только для выбранных примеров.
5. Итерации: дообучение модели → новый отбор спорных примеров → разметка → снова обучение.
- Сокращение с 100 000 размеченных примеров до менее 500 при сохранении или улучшении качества.
- Улучшение метрики *Cohen’s Kappa* на 55–65 %.
- В больших продакшн-моделях — до 3–4 порядков меньше данных при сопоставимом или лучшем качестве.
Это метрика, которая показывает, насколько два "судьи" (например, эксперт и модель) согласны между собой с поправкой на случайные совпадения.
- 0.0 — нет согласия (или хуже случайного)
- 0.41–0.60 — умеренное согласие
- 0.61–0.80 — значительное
- 0.81–1.00 — почти полное согласие
В задачах с дисбалансом классов Kappa даёт более честную оценку, чем обычная точность (accuracy).
Чем лучше предыдущих методов:
- Точечная разметка: размечаются только самые информативные примеры.
- Масштабируемость: метод применим к наборам данных с сотнями миллиардов примеров.
- Экономия ресурсов: меньше времени и затрат на разметку.
- Быстрая адаптация: подходит для доменов с быстро меняющимися правилами (реклама, модерация, безопасность).
При умном отборе данных LLM можно адаптировать в тысячи раз быстрее и дешевле, чем при традиционном обучении на больших размеченных наборах.
#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency
@ai_machinelearning_big_data
#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤3🤔2🔥1🥰1
Google представила MLE-STAR — ИИ-агента, который автоматизирует разработку ML-моделей и побеждает в 63% соревнований Kaggle.
🚀 Полная автоматизация — агент сам проектирует, тестирует и оптимизирует модели без ручного кода.
🏆 Рекордные результаты — медали в 63% конкурсов MLE Bench Lite (36% из них — золото) против 25,8% у предыдущих решений.
🌐 Веб-поиск вместо устаревших моделей — MLE-STAR находит и использует актуальные архитектуры (EfficientNet, ViT) вместо ResNet.
🛡 Три модуля защиты — автоматическая проверка на баги, утечки данных и ошибки LLM.
💻 Open source — Google выложила код в составе Agent Development Kit (ADK).
🔄 Авто-апгрейд — за счёт постоянного поиска новейших моделей производительность растёт сама по мере развития ML.
🔜 Подробнее
#Google #GoogleResearch #ml #mle #llm
🚀 Полная автоматизация — агент сам проектирует, тестирует и оптимизирует модели без ручного кода.
🏆 Рекордные результаты — медали в 63% конкурсов MLE Bench Lite (36% из них — золото) против 25,8% у предыдущих решений.
🌐 Веб-поиск вместо устаревших моделей — MLE-STAR находит и использует актуальные архитектуры (EfficientNet, ViT) вместо ResNet.
🛡 Три модуля защиты — автоматическая проверка на баги, утечки данных и ошибки LLM.
💻 Open source — Google выложила код в составе Agent Development Kit (ADK).
🔄 Авто-апгрейд — за счёт постоянного поиска новейших моделей производительность растёт сама по мере развития ML.
#Google #GoogleResearch #ml #mle #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
😱7❤5👍1🔥1💩1
Forwarded from Machinelearning
Ландшафт архитектур LLM превратился в настоящий зоопарк. Почти каждую неделю появляются новые методы, обещающие меньший расход памяти и более быстрый инференс. Разобраться в этом становится все сложнее.
Большая группа исследователей выпустила подробный обзор Speed Always Wins, чтобы систематизировать все ключевые инновации в области эффективных архитектур для LLM.
Это не просто очередная статья, а попытка упорядочить и структурировать актуальные подходы, которые решают главную проблему классического трансформера - его квадратичную вычислительную сложность.
Обзор описывает 7 основных направлений.
Здесь авторы разбирают все подходы, которые так или иначе сводят сложность самовнимания к линейной. В эту категорию попадают 3 большие ветви: линейное внимание; линейные RNN, вроде и, конечно, модели на основе пространства состояний (SSM).
Разреженное моделирование последовательностей основано на простом принципе: не каждый токен должен общаться с каждым. Здесь выделяются статические подходы (как в Longformer), где паттерны внимания заданы заранее, и динамические, где они определяются на лету в зависимости от контента.
Методика, которая уже стала мейнстримом. В МоЕ разреженность применяется не в механизме внимания, а в FFN-слоях, где для каждого токена активируется лишь небольшая часть экспертов, что позволяет наращивать число параметров без пропорционального роста вычислений.
В нем речь идет не об изменении асимптотической сложности, а об ее аппаратной оптимизации. Флагман - FlashAttention.
Есть детальный разбор, как за счет оптимизации обращений к памяти GPU удается кардинально ускорить вычисления, не прибегая к аппроксимациям. Сюда же относятся и групповые механизмы внимания: GQA и MQA.
Это, пожалуй, самый горячий тренд. Его идея в том, чтобы стратегически комбинировать быстрые слои с линейной сложностью и медленные, но мощные слои с полным вниманием.
В обзоре выделяют два типа гибридизации: межслойную, как в Jamba, где разные типы слоев чередуются, и внутрислойную, где в одном слое разные головы могут использовать разные механизмы внимания.
Это неавторегрессионные модели, которые генерируют текст, постепенно восстанавливая его из шума. Их главная фишка в параллельном декодировании, что дает ощутимое ускорение инференса.
В конце обзора есть анализ применения всех этих архитектур в разных модальностях - CV и аудио.
Так что, если хотите быстро разобраться в базовых методах, которые будут двигать дизайн LLM в ближайшее время,
@ai_machinelearning_big_data
#AI #ML #LLM #Architectures
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍1🔥1
🤯 Apple и Оксфорд сделали ИИ умнее в 6,5 раза
Вместо того чтобы просто "угадывать ответ", агент теперь сам задаёт правильные вопросы.
Успешность выросла с 14% до 91%, и это работает на уже существующих моделях — без дообучения.
🔄 Принцип:
1. Агент придумывает возможные решения.
2. Считает, какой вопрос сузит список максимально.
3. Задаёт только один лучший вопрос.
4. Фильтрует варианты и повторяет цикл, пока не найдёт ответ.
⚡ Зачем это нужно:
- Бизнесу → меньше ошибок, быстрее диагностика, точнее персонализация.
- Разработчикам → фреймворк можно использовать уже сегодня.
- Учёным → победа информационной теории: точные вопросы эффективнее любых эвристик.
#AI #Apple #Oxford #LLM #Agents
https://arxiv.org/pdf/2508.21184
Вместо того чтобы просто "угадывать ответ", агент теперь сам задаёт правильные вопросы.
Успешность выросла с 14% до 91%, и это работает на уже существующих моделях — без дообучения.
🔄 Принцип:
1. Агент придумывает возможные решения.
2. Считает, какой вопрос сузит список максимально.
3. Задаёт только один лучший вопрос.
4. Фильтрует варианты и повторяет цикл, пока не найдёт ответ.
⚡ Зачем это нужно:
- Бизнесу → меньше ошибок, быстрее диагностика, точнее персонализация.
- Разработчикам → фреймворк можно использовать уже сегодня.
- Учёным → победа информационной теории: точные вопросы эффективнее любых эвристик.
#AI #Apple #Oxford #LLM #Agents
https://arxiv.org/pdf/2508.21184
👍7🔥3💩2😁1
Forwarded from Machinelearning
OpenAI опубликовали исследование о причинах галлюцинации LLM.
Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.
Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.
Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.
В работе вводится понятие
singleton rate — доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле. Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.
Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты:
03-07, 15-06 и 01-01. Ни одна из них не была даже близка к правильной (осенью). В другом тесте, где нужно было сосчитать количество букв
D в слове DEEPSEEK, та же DeepSeek-V3 выдавала 2 или 3, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6 и 7. При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний.
Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ
я не знаю - 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.Эту гипотезу подтвердили анализом популярных оценочных наборов.
В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата
я не знаю. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.
Еще рекомендуют включают мониторинг
singleton-rate на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю не штрафовались автоматически.@ai_machinelearning_big_data
#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤3🤔1
📊 Новое поколение баз данных для ИИ-агентов
Когда LLM-агенты работают с БД, они не делают один большой запрос. Вместо этого они засыпают систему тысячами мелких пробных запросов: проверяют структуру, ищут связи, тестируют планы. Это явление получило название agentic speculation. Итог — колоссальный перерасход ресурсов.
🆕 Исследователи предлагают «agent-first database» — базу, спроектированную с учётом поведения агентов.
🔑 Как это работает:
- Агент отправляет не просто SQL-запрос, а пробу с брифом: какая цель, на каком этапе он сейчас, какая нужна точность и что в приоритете.
- База может дать приближённый ответ, если данных уже достаточно, вместо того чтобы тратить ресурсы на полный расчёт.
- Запросы поддерживают семантический поиск по таблицам и строкам, что в SQL выразить сложно.
⚙️ Внутренние механизмы:
- Sleeper agents подсказывают лучшие join’ы, объясняют пустые результаты и оценивают стоимость запросов.
- Оптимизатор проб объединяет похожие запросы, кэширует частичные результаты и выдаёт быстрые ответы, когда «достаточно сигнала».
- Agentic memory хранит знания, которые можно переиспользовать в будущем.
- Общий менеджер транзакций позволяет быстро пробовать разные сценарии («what-if») без лишних затрат.
📌 Вывод: традиционный SQL не подходит для эпохи LLM. Нужны базы, которые понимают стратегию агента, сокращают лишние шаги и экономят ресурсы.
🔗 Paper: arxiv.org/abs/2509.00997
#AI #Databases #LLM #Agents
Когда LLM-агенты работают с БД, они не делают один большой запрос. Вместо этого они засыпают систему тысячами мелких пробных запросов: проверяют структуру, ищут связи, тестируют планы. Это явление получило название agentic speculation. Итог — колоссальный перерасход ресурсов.
🆕 Исследователи предлагают «agent-first database» — базу, спроектированную с учётом поведения агентов.
🔑 Как это работает:
- Агент отправляет не просто SQL-запрос, а пробу с брифом: какая цель, на каком этапе он сейчас, какая нужна точность и что в приоритете.
- База может дать приближённый ответ, если данных уже достаточно, вместо того чтобы тратить ресурсы на полный расчёт.
- Запросы поддерживают семантический поиск по таблицам и строкам, что в SQL выразить сложно.
⚙️ Внутренние механизмы:
- Sleeper agents подсказывают лучшие join’ы, объясняют пустые результаты и оценивают стоимость запросов.
- Оптимизатор проб объединяет похожие запросы, кэширует частичные результаты и выдаёт быстрые ответы, когда «достаточно сигнала».
- Agentic memory хранит знания, которые можно переиспользовать в будущем.
- Общий менеджер транзакций позволяет быстро пробовать разные сценарии («what-if») без лишних затрат.
📌 Вывод: традиционный SQL не подходит для эпохи LLM. Нужны базы, которые понимают стратегию агента, сокращают лишние шаги и экономят ресурсы.
🔗 Paper: arxiv.org/abs/2509.00997
#AI #Databases #LLM #Agents
👍5🤔3
📚 Новая работа исследователей сравнивает два способа подключения LLM к учебным материалам, чтобы их ответы были точнее и полезнее.
Обычные LLM часто дают неверные или устаревшие факты. Решение - Retrieval Augmented Generation (RAG), где модель ищет ответы в курсах и книгах вместо «догадок».
🔹 Метод 1: vector search
- Ищет текстовые фрагменты, похожие по смыслу на вопрос.
- Быстрый, дешёвый, отлично подходит для фактов и коротких запросов.
🔹 Метод 2: graph search
- Строит сеть связанных идей из текста.
- Помогает отвечать на вопросы про широкие темы и делать подробные объяснения.
- Но работает медленнее и требует в 10–20 раз больше ресурсов.
Для эксперимента авторы создали датасет EduScopeQA (3 176 вопросов по истории, литературе, науке и компьютерным наукам). Тестировали даже на изменённых учебниках, чтобы проверить, смогут ли модели избежать устаревших знаний.
📊 Результаты:
- Vector search - лучше для коротких, фактологических вопросов.
- GraphRAG Global - лучший для общих тем и широких вопросов.
- GraphRAG Local - сильнее всего, когда учебники длинные и подробные.
Итог: исследователи собрали routing system, которая отправляет каждый вопрос к оптимальному методу. Это позволяет сохранять точность и не тратить лишние ресурсы на графовый поиск.
📝 Paper: https://arxiv.org/abs/2509.07846v1
#LLM #RAG #Education #VectorSearch #GraphSearch #AIResearch
Обычные LLM часто дают неверные или устаревшие факты. Решение - Retrieval Augmented Generation (RAG), где модель ищет ответы в курсах и книгах вместо «догадок».
🔹 Метод 1: vector search
- Ищет текстовые фрагменты, похожие по смыслу на вопрос.
- Быстрый, дешёвый, отлично подходит для фактов и коротких запросов.
🔹 Метод 2: graph search
- Строит сеть связанных идей из текста.
- Помогает отвечать на вопросы про широкие темы и делать подробные объяснения.
- Но работает медленнее и требует в 10–20 раз больше ресурсов.
Для эксперимента авторы создали датасет EduScopeQA (3 176 вопросов по истории, литературе, науке и компьютерным наукам). Тестировали даже на изменённых учебниках, чтобы проверить, смогут ли модели избежать устаревших знаний.
📊 Результаты:
- Vector search - лучше для коротких, фактологических вопросов.
- GraphRAG Global - лучший для общих тем и широких вопросов.
- GraphRAG Local - сильнее всего, когда учебники длинные и подробные.
Итог: исследователи собрали routing system, которая отправляет каждый вопрос к оптимальному методу. Это позволяет сохранять точность и не тратить лишние ресурсы на графовый поиск.
📝 Paper: https://arxiv.org/abs/2509.07846v1
#LLM #RAG #Education #VectorSearch #GraphSearch #AIResearch
👍7❤3🔥1
Forwarded from Machinelearning
Google Research придумали новый способ сделать большие языковые модели быстрее и дешевле.
Что это такое:
Сначала отвечает маленькая модель. Если задача слишком сложная - подключается большая. Так экономятся ресурсы, но качество может прыгать.
Маленькая модель угадывает сразу несколько слов вперёд. Большая быстро проверяет данные и подтверждает. Скорость выше, но большая модель всё равно тратит много ресурсов.
Это комбинация: маленькая модель иногда отвечает полностью сама, а иногда используется как ускоритель для большой. В итоге получаем меньше затрат, больше скорости и то же качество.
- быстрее, чем обычная спекулятивная декодировка
- дешевле и качественнее, чем каскады
- удобнее настраивать баланс «скорость ↔ качество»
При том же уровне качества, что и у спекулятивной декодировки, новый метод работает быстрее (генерирует больше токенов за один вызов большой модели).
А в задачах математических рассуждений получен явный апгрейд по скорости при сохранении или даже улучшении качества.
LLM всё чаще используются в поиске, чатах, ассистентах. Чтобы они реально были полезными, их нужно ускорять и удешевлять. *Speculative cascades* помогают это сделать без потери качества.
🔗 Подробнее: https://research.google/blog/speculative-cascades-a-hybrid-approach-for-smarter-faster-llm-inference/
@ai_machinelearning_big_data
#AI #LLM #Inference #SpeculativeDecoding #Cascades #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍1
🚀 Новое исследование: Reinforcement Learning on Pre-training Data (RLPT)
Этот метод решает главную проблему масштабирования LLM — ограниченность размеченного текста.
🌟 RLPT даёт моделям возможность учиться рассуждениям напрямую на данных предобучения, без дорогой ручной разметки.
Как это работает:
1️⃣ Модель во время обучения сама исследует данные и учится более общим стратегиям рассуждений.
2️⃣ Никакой дополнительной разметки — награды извлекаются прямо из предобучающих данных.
3️⃣ Награды за предсказание следующего сегмента позволяют масштабировать RL на этапе предобучения.
Результаты:
✅ На Qwen3-4B-Base прирост: +3.0 (MMLU), +5.1 (MMLU-Pro), +8.1 (GPQA-Diamond), +6.0 (KOR-Bench), +6.6 (AIME24), +5.3 (AIME25).
✅ Чем больше вычислений, тем сильнее рост.
✅ Технология создаёт базу для дальнейших улучшений в RLVR.
📄 Подробнее: https://arxiv.org/pdf/2509.19249
#AI #RLPT #LLM #MachineLearning #NLP
Этот метод решает главную проблему масштабирования LLM — ограниченность размеченного текста.
🌟 RLPT даёт моделям возможность учиться рассуждениям напрямую на данных предобучения, без дорогой ручной разметки.
Как это работает:
1️⃣ Модель во время обучения сама исследует данные и учится более общим стратегиям рассуждений.
2️⃣ Никакой дополнительной разметки — награды извлекаются прямо из предобучающих данных.
3️⃣ Награды за предсказание следующего сегмента позволяют масштабировать RL на этапе предобучения.
Результаты:
✅ На Qwen3-4B-Base прирост: +3.0 (MMLU), +5.1 (MMLU-Pro), +8.1 (GPQA-Diamond), +6.0 (KOR-Bench), +6.6 (AIME24), +5.3 (AIME25).
✅ Чем больше вычислений, тем сильнее рост.
✅ Технология создаёт базу для дальнейших улучшений в RLVR.
📄 Подробнее: https://arxiv.org/pdf/2509.19249
#AI #RLPT #LLM #MachineLearning #NLP
❤3👍3🔥1
Forwarded from Machinelearning
Это подборка интерактивных ноутбуков, демонстрирующих возможности Qwen3-VL - как при локальном запуске, так и через API.
Внутри - десятки реальных примеров с разборами:
▪ Работа с изображениями и рассуждение по ним
▪ Агент для взаимодействия с интерфейсами (Computer-Use Agent)
▪ Мультимодальное программирование
▪ Распознавание объектов и сцен (Omni Recognition)
▪ Продвинутое извлечение данных из документов
▪ Точное определение объектов на изображении
▪ OCR и извлечение ключевой информации
▪ 3D-анализ и привязка объектов
▪ Понимание длинных документов
▪ Пространственное рассуждение
▪ Мобильный агент
▪ Анализ и понимание видео
@ai_machinelearning_big_data
#Qwen #Qwen3VL #AI #VisionLanguage #Multimodal #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍4
Forwarded from Machinelearning
⚡️ Glyph: масштабирование контекста через визуально-текстовую компрессию
В основе модели лежит простая идея : вместо того чтобы кормить модели километровый текст, Glyph превращает его в изображение и обрабатывает через vision-language модель.
Используется LLM-управляемый генетический алгоритм, чтобы подобрать наилучшие параметры визуального отображения текста (шрифт, плотность, макет), балансируя между сжатием и точностью.
Это радикально снижает вычислительные затраты, сохраняя при этом смысловую структуру текста.
При этом точность почти не падает: на задачах с длинным контекстом Glyph работает на уровне современных моделей вроде Qwen3-8B.
При экстремальном сжатии VLM с контекстом 128K может эффективно обрабатывать задачи, эквивалентные 1M+ токенов в традиционных LLM.
Фактически, длинный контекст становится мультимодальной задачей, а не чисто текстовой.
📄 Подробности: arxiv.org/abs/2510.17800
🧩 Веса: huggingface.co/zai-org/Glyph
👉 Репозиторий: github.com/thu-coai/Glyph
@ai_machinelearning_big_data
#AI #LLM #Multimodal #Research #DeepLearning
В основе модели лежит простая идея : вместо того чтобы кормить модели километровый текст, Glyph превращает его в изображение и обрабатывает через vision-language модель.
Используется LLM-управляемый генетический алгоритм, чтобы подобрать наилучшие параметры визуального отображения текста (шрифт, плотность, макет), балансируя между сжатием и точностью.
Это радикально снижает вычислительные затраты, сохраняя при этом смысловую структуру текста.
При этом точность почти не падает: на задачах с длинным контекстом Glyph работает на уровне современных моделей вроде Qwen3-8B.
При экстремальном сжатии VLM с контекстом 128K может эффективно обрабатывать задачи, эквивалентные 1M+ токенов в традиционных LLM.
Фактически, длинный контекст становится мультимодальной задачей, а не чисто текстовой.
📄 Подробности: arxiv.org/abs/2510.17800
🧩 Веса: huggingface.co/zai-org/Glyph
👉 Репозиторий: github.com/thu-coai/Glyph
@ai_machinelearning_big_data
#AI #LLM #Multimodal #Research #DeepLearning
👨💻1
Forwarded from Machinelearning
🔥 Hugging Face снова выкатили полезные материалы
Вышла бесплатная плейбук о том, как изнутри строят SOTA-модели.
Без общих слов - только реальные решения и нюансы, которые обычно скрыты внутри исследовательских команд.
Это полноценный playbook для тех, кто хочет понимать, как утсрены современные LLM.
Что внутри:
• Логика построения модели: зачем → что → как
• Как разработчики берут модель и по частям включают/выключают компоненты (или меняют их)
• Архитектура: ключевые выборы и trade-offs
• Искусство подбора и очистки данных
• Как проходит обучение моделей
• Пост-тренинг и RLHF в 2025
• Инфраструктура больших моделей
По первым страницам - уровень деталей как в Ultra-scale playbook.
Ссылка: https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook#designing-the-model-architecture
@ai_machinelearning_big_data
#AI #LLM #MachineLearning #HuggingFace
Вышла бесплатная плейбук о том, как изнутри строят SOTA-модели.
Без общих слов - только реальные решения и нюансы, которые обычно скрыты внутри исследовательских команд.
Это полноценный playbook для тех, кто хочет понимать, как утсрены современные LLM.
Что внутри:
• Логика построения модели: зачем → что → как
• Как разработчики берут модель и по частям включают/выключают компоненты (или меняют их)
• Архитектура: ключевые выборы и trade-offs
• Искусство подбора и очистки данных
• Как проходит обучение моделей
• Пост-тренинг и RLHF в 2025
• Инфраструктура больших моделей
По первым страницам - уровень деталей как в Ultra-scale playbook.
Ссылка: https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook#designing-the-model-architecture
@ai_machinelearning_big_data
#AI #LLM #MachineLearning #HuggingFace
❤4🔥4🥰1