📘 OpenAI выпустила GPT-5 Prompting Guide — руководство по созданию эффективных промтов
Что внутри:
- 🛠 Agentic workflows — как настраивать автономность модели и управлять глубиной размышлений (`reasoning_effort`).
- 📋 Tool preambles — структура работы с инструментами: цель, план, комментарии, итог.
- ⚡ Responses API — альтернатива Chat Completions для экономии токенов и улучшения качества.
- 💻 Кодинг — советы по интеграции в Next.js, React, Tailwind и оптимизации стиля кода.
- 🎯 Steering & verbosity — контроль длины и стиля ответа, избегание конфликтующих инструкций.
- 🚀 Minimal reasoning mode — быстрые задачи с чётким планом и приоритетами.
- 🔄 Метапромтинг — использование GPT-5 для улучшения собственных промтов.
Кому полезно:
Разработчикам агентных систем, AI-ассистентов и всем, кто хочет выжать максимум из GPT-5.
🔗 Полный гайд и примеры
#GPT5 #PromptEngineering #OpenAI #AI
Что внутри:
- 🛠 Agentic workflows — как настраивать автономность модели и управлять глубиной размышлений (`reasoning_effort`).
- 📋 Tool preambles — структура работы с инструментами: цель, план, комментарии, итог.
- ⚡ Responses API — альтернатива Chat Completions для экономии токенов и улучшения качества.
- 💻 Кодинг — советы по интеграции в Next.js, React, Tailwind и оптимизации стиля кода.
- 🎯 Steering & verbosity — контроль длины и стиля ответа, избегание конфликтующих инструкций.
- 🚀 Minimal reasoning mode — быстрые задачи с чётким планом и приоритетами.
- 🔄 Метапромтинг — использование GPT-5 для улучшения собственных промтов.
Кому полезно:
Разработчикам агентных систем, AI-ассистентов и всем, кто хочет выжать максимум из GPT-5.
🔗 Полный гайд и примеры
#GPT5 #PromptEngineering #OpenAI #AI
❤7👍4🔥2
Forwarded from Machinelearning
Embedding Atlas — опенсорсный инструмент от Apple для интерактивной визуализации больших наборов векторных представлений, который позволяет не просто смотреть на облако точек, а полноценно с ним работать. И что самое приятное, он способен отрисовывать до нескольких миллионов точек благодаря реализации на WebGPU.
Embedding Atlas сам находит скопления в данных и подписывает их, позволяя мгновенно сориентироваться в общей структуре датасета. Чтобы отделить реальные кластеры от случайных выбросов, используется оценка плотности ядра с отрисовкой контуров плотности.
Решена и вечная проблема визуализаций - "каша" из перекрывающихся точек. Embedding Atlas использует технологию order-independent transparency, так что даже при большом наложении точек картинка остаётся четкой и информативной.
В инструменте есть поиск в реальном времени и нахождение ближайших соседей. Можно ввести текстовый запрос или просто кликнуть на любую точку в облаке, и Embedding Atlas мгновенно подсветит наиболее похожие на нее данные.
Еще есть интерактивный фильтр по метаданным. Например, можно выбрать на гистограмме определенный класс объектов, и визуализация тут же отфильтрует эмбединги, оставив только соответствующие ему точки.
Дает три варианта интеграции: утилиту командной строки для быстрой визуализации датафреймов, виджет для Jupyter, позволяющий встраивать атлас прямо в ноутбуки, и компонент для Streamlit, если вы создаете полноценные веб-приложения.
Этот пакет для тех, кто хочет встроить визуализацию в собственные веб-приложения. Он предоставляет готовые UI-компоненты в виде API:
Table, EmbeddingView, EmbeddingViewMosaic и EmbeddingAtlas.@ai_machinelearning_big_data
#AI #ML #Embedding #Visualisation #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤12🔥3🥰1🤯1
Forwarded from Machinelearning
Google представила g-AMIE (guardrailed-AMIE) — расширенную версию своей исследовательской системы AMIE, которая работает в паре с врачом по принципу асинхронного надзора.
Идея проста: ИИ собирает анамнез, а врач принимает решения. Для этого была разработана многоагентная система на базе Gemini 2.0 Flash и специальный веб-интерфейс "кабинет врача"
Агент-диалог ведёт беседу с пациентом, собирая информацию. Его работа делится на 3 фазы: общий сбор анамнеза, целенаправленная проверка первоначального дифференциального диагноза и заключительная фаза с ответами на вопросы пациента.Агент-ограничитель следит за тем, чтобы агент-диалог не давал никаких индивидуальных медицинских советов, диагнозов или планов лечения, при необходимости перефразируя его ответы.Агент SOAP-записи генерирует подробную медицинскую карту в популярном формате SOAP, разделяя задачи предварительных итогов (жалобы пациента, объективные данные) и вывода (оценка и план лечения).После сбора анамнеза сгенерированная SOAP-запись и черновик заключения отправляются на проверку врачу через «кабинет врача». Врач может редактировать документы и либо одобрить отправку сообщения, либо принять решение о необходимости очной консультации.
Чтобы оценить эффективность такого подхода, было проведено рандомизированное слепое исследование в формате виртуального объективного структурированного клинического экзамена (ОСКЭ) на 60 клинических сценариях.
В исследовании участвовали пациенты, g-AMIE и 2 контрольные группы: врачи общей практики и медсестры-практики/ассистенты врачей. Обеим человеческим группам было предписано работать в тех же ограничениях, что и g-AMIE, то есть только собирать анамнез без предоставления советов. Затем их SOAP-записи и проекты сообщений оценивались группой опытных врачей-наблюдателей.
Во-первых, g-AMIE успешно справился с задачей и ни разу не был уличён в предоставлении индивидуальных медицинских советов.
Во-вторых, его способность извлекать ключевую информацию из беседы с пациентом была оценена выше, чем у обеих контрольных групп. SOAP-записи, сгенерированные g-AMIE, были признаны более полными, точными и читаемыми.
Врачи-наблюдатели чаще предпочитали работать с записями от ИИ и с большей вероятностью одобряли составленные им сообщения для пациентов.
Более того, дифференциальные диагнозы и планы лечения, основанные на данных от g-AMIE, были оценены как более адекватные.
g-AMIE оказался более "многословным", что, с одной стороны, способствовало лучшему установлению контакта с пациентом (тестовые пациенты отметили его эмпатию), но с другой — приводило к более длительному времени проверки записей врачами.
Во-вторых, хотя в записях g-AMIE и встречались галлюцинации, их частота была сопоставима с ошибками памяти у людей.
Интересно, что медсестры и ассистенты врачей показали себя лучше, чем врачи общей практики, как в сборе анамнеза, так и в соблюдении ограничений.
Авторы объясняют это тем, что врачи не привыкли воздерживаться от советов во время консультации и их стандартный рабочий процесс был нарушен. Поэтому результаты не следует интерпретировать как прямое превосходство ИИ над клиницистами в реальном мире, так как люди не были обучены работать в этой новой парадигме.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍2
Forwarded from Machinelearning
Ландшафт архитектур LLM превратился в настоящий зоопарк. Почти каждую неделю появляются новые методы, обещающие меньший расход памяти и более быстрый инференс. Разобраться в этом становится все сложнее.
Большая группа исследователей выпустила подробный обзор Speed Always Wins, чтобы систематизировать все ключевые инновации в области эффективных архитектур для LLM.
Это не просто очередная статья, а попытка упорядочить и структурировать актуальные подходы, которые решают главную проблему классического трансформера - его квадратичную вычислительную сложность.
Обзор описывает 7 основных направлений.
Здесь авторы разбирают все подходы, которые так или иначе сводят сложность самовнимания к линейной. В эту категорию попадают 3 большие ветви: линейное внимание; линейные RNN, вроде и, конечно, модели на основе пространства состояний (SSM).
Разреженное моделирование последовательностей основано на простом принципе: не каждый токен должен общаться с каждым. Здесь выделяются статические подходы (как в Longformer), где паттерны внимания заданы заранее, и динамические, где они определяются на лету в зависимости от контента.
Методика, которая уже стала мейнстримом. В МоЕ разреженность применяется не в механизме внимания, а в FFN-слоях, где для каждого токена активируется лишь небольшая часть экспертов, что позволяет наращивать число параметров без пропорционального роста вычислений.
В нем речь идет не об изменении асимптотической сложности, а об ее аппаратной оптимизации. Флагман - FlashAttention.
Есть детальный разбор, как за счет оптимизации обращений к памяти GPU удается кардинально ускорить вычисления, не прибегая к аппроксимациям. Сюда же относятся и групповые механизмы внимания: GQA и MQA.
Это, пожалуй, самый горячий тренд. Его идея в том, чтобы стратегически комбинировать быстрые слои с линейной сложностью и медленные, но мощные слои с полным вниманием.
В обзоре выделяют два типа гибридизации: межслойную, как в Jamba, где разные типы слоев чередуются, и внутрислойную, где в одном слое разные головы могут использовать разные механизмы внимания.
Это неавторегрессионные модели, которые генерируют текст, постепенно восстанавливая его из шума. Их главная фишка в параллельном декодировании, что дает ощутимое ускорение инференса.
В конце обзора есть анализ применения всех этих архитектур в разных модальностях - CV и аудио.
Так что, если хотите быстро разобраться в базовых методах, которые будут двигать дизайн LLM в ближайшее время,
@ai_machinelearning_big_data
#AI #ML #LLM #Architectures
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍1🔥1
Forwarded from Machinelearning
Новая модель для повседневных задач программирования с упором на agentic-coding (циклы рассуждений + вызовы инструментов: grep, терминал, редактирование файлов). Обучена на огромном корпусе кода и дообучена на реальных PR/задачах.
🙌 Модель уже доступна бесплатно на популярных платформах:
GitHub Copilot, Cursor, Cline, Kilo Code, Roo Code, opencode и Windsurf. Контекст 256k токенов, лимиты: до 2M токенов в минуту и 480 запросов в минуту.
- Новая лёгкая архитектура, разработанная с нуля
- Заточена на скорость и эффективность
- Показвает хорошие результаты в TypeScript, Python, Java, Rust, C++, Go
- $0.20 / 1M входных токенов
- $1.50 / 1M выходных токенов
- $0.02 / 1M кешированных токенов
в 6 раз дешевле, чем GPT-5.
Команда Grok обещает выпускать регулярные обновления и уже тренирует вариант с мультимодальным вводом, параллельными tool-calls и расширенным контекстом.
@ai_machinelearning_big_data
#xAI #Grok #AI #coding
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4🔥3💩1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Компания объявила о покупке Statsig - платформы, специализирующейся на продуктовой аналитике и A/B-тестировании. Ее основатель и CEO Statsig, Виджая Раджи, будет назначен на пост технического директора по приложениям (CTO of Applications) в OpenAI. Он возглавит продуктовую инженерию для ChatGPT и Codex. Вся команда Statsig присоединится к OpenAI, однако сама платформа продолжит работать независимо и обслуживать текущих клиентов.
openai.com
OpenAI анонсировала новые функции безопасности для ChatGPT для на защиты молодых пользователей и помощи в кризисных ситуациях. Первая новинка - система автоматической маршрутизации: при обнаружении признаков острого психологического стресса разговор будет передаваться "думающим" моделям. Они обучены с помощью метода Deliberative Alignment и дают более медленные и взвешенные ответы. Обновление планируется выпустить в течение 120 дней.
В ближайший месяц также появятся функции родительского контроля. Родители смогут связывать свои аккаунты с аккаунтами подростков от 13 лет, чтобы устанавливать ограничения и получать оповещения, если система зафиксирует у ребенка признаки кризисного состояния.
openai.com
В Швейцарии состоялся запуск Apertus — национальной LLM с открытым исходным кодом. Проект, разработанный консорциумом государственных институтов, позиционируется как альтернатива коммерческим моделям. Apertus полностью прозрачен: разработчики опубликовали не только саму модель, но и исходный код процесса обучения, документацию и использованные наборы данных.
Модель обучена на 15 трлн. токенов и поддерживает более 1000 языков, 40% данных - не на английском. Apertus создавалась с учетом швейцарских и европейских законов о защите данных и авторском праве, что делает ее привлекательной для местного бизнеса. Модель доступна на Hugging Face в 2 версиях: 8 и 70 млрд. параметров.
swissinfo.ch
Dolby Vision 2 - следующее поколение формата HDR, который постепенно заменит Dolby Vision и Dolby Vision IQ. Особенность новой технологии - использование ИИ для динамической подстройки качества изображения в реальном времени.
Система Content Intelligence будет анализировать сцены, учитывать условия освещения в комнате и с помощью машинного обучения корректировать картинку "на лету". Например, функция Precision Black улучшит детализацию в темных сценах, а Light Sense адаптирует изображение под окружающую среду.
Первым производителем, который внедрит Dolby Vision 2, станет Hisense, а первым чипом со встроенной поддержкой нового стандарта будет MediaTek Pentonic 800.
dolby.com
ЦЕРН применила методы машинного обучения для поиска редких событий - распада бозона Хиггса на два charm-кварка. Эта задача критически важна для проверки Стандартной модели, так как взаимодействие бозона с легкими кварками, из которых состоит обычная материя, до сих пор экспериментально не подтверждено.
Основная сложность заключалась в идентификации так называемых «джетов», порожденных именно charm-кварками. Для этого исследователи использовали графовую нейронную сеть, обученную на сотнях миллионов симуляций, а для отделения реальных событий от фонового шума была задействована сеть, архитектурно схожая с ChatGPT.
В результате анализа данных, собранных на БАК, удалось установить самые строгие на сегодняшний день ограничения на силу взаимодействия бозона Хиггса с charm-кварком. Это значительный шаг в понимании механизма, который придает массу фундаментальным частицам.
scitechdaily.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍5
🤯 Apple и Оксфорд сделали ИИ умнее в 6,5 раза
Вместо того чтобы просто "угадывать ответ", агент теперь сам задаёт правильные вопросы.
Успешность выросла с 14% до 91%, и это работает на уже существующих моделях — без дообучения.
🔄 Принцип:
1. Агент придумывает возможные решения.
2. Считает, какой вопрос сузит список максимально.
3. Задаёт только один лучший вопрос.
4. Фильтрует варианты и повторяет цикл, пока не найдёт ответ.
⚡ Зачем это нужно:
- Бизнесу → меньше ошибок, быстрее диагностика, точнее персонализация.
- Разработчикам → фреймворк можно использовать уже сегодня.
- Учёным → победа информационной теории: точные вопросы эффективнее любых эвристик.
#AI #Apple #Oxford #LLM #Agents
https://arxiv.org/pdf/2508.21184
Вместо того чтобы просто "угадывать ответ", агент теперь сам задаёт правильные вопросы.
Успешность выросла с 14% до 91%, и это работает на уже существующих моделях — без дообучения.
🔄 Принцип:
1. Агент придумывает возможные решения.
2. Считает, какой вопрос сузит список максимально.
3. Задаёт только один лучший вопрос.
4. Фильтрует варианты и повторяет цикл, пока не найдёт ответ.
⚡ Зачем это нужно:
- Бизнесу → меньше ошибок, быстрее диагностика, точнее персонализация.
- Разработчикам → фреймворк можно использовать уже сегодня.
- Учёным → победа информационной теории: точные вопросы эффективнее любых эвристик.
#AI #Apple #Oxford #LLM #Agents
https://arxiv.org/pdf/2508.21184
👍7🔥3💩2😁1
Forwarded from Machinelearning
400 страниц про всё, что нужно знать об агентных системах. Автор — senior engineer в Google, выложил драфт для открытого ревью.
📖 В книге:
- продвинутые техники промптинга
- паттерны для мульти-агентов
- использование инструментов и MCP
- практические примеры с кодом
⚡ По сути, это полный справочник по построению умных агентов. Must-read для разработчиков AI.
@ai_machinelearning_big_data
#AI #Agents #Google #OpenSource #freebook
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤4🔥2💩2
Forwarded from Machinelearning
OpenAI опубликовали исследование о причинах галлюцинации LLM.
Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.
Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.
Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.
В работе вводится понятие
singleton rate — доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле. Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.
Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты:
03-07, 15-06 и 01-01. Ни одна из них не была даже близка к правильной (осенью). В другом тесте, где нужно было сосчитать количество букв
D в слове DEEPSEEK, та же DeepSeek-V3 выдавала 2 или 3, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6 и 7. При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний.
Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ
я не знаю - 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.Эту гипотезу подтвердили анализом популярных оценочных наборов.
В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата
я не знаю. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.
Еще рекомендуют включают мониторинг
singleton-rate на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю не штрафовались автоматически.@ai_machinelearning_big_data
#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤3🤔1
📊 Новое поколение баз данных для ИИ-агентов
Когда LLM-агенты работают с БД, они не делают один большой запрос. Вместо этого они засыпают систему тысячами мелких пробных запросов: проверяют структуру, ищут связи, тестируют планы. Это явление получило название agentic speculation. Итог — колоссальный перерасход ресурсов.
🆕 Исследователи предлагают «agent-first database» — базу, спроектированную с учётом поведения агентов.
🔑 Как это работает:
- Агент отправляет не просто SQL-запрос, а пробу с брифом: какая цель, на каком этапе он сейчас, какая нужна точность и что в приоритете.
- База может дать приближённый ответ, если данных уже достаточно, вместо того чтобы тратить ресурсы на полный расчёт.
- Запросы поддерживают семантический поиск по таблицам и строкам, что в SQL выразить сложно.
⚙️ Внутренние механизмы:
- Sleeper agents подсказывают лучшие join’ы, объясняют пустые результаты и оценивают стоимость запросов.
- Оптимизатор проб объединяет похожие запросы, кэширует частичные результаты и выдаёт быстрые ответы, когда «достаточно сигнала».
- Agentic memory хранит знания, которые можно переиспользовать в будущем.
- Общий менеджер транзакций позволяет быстро пробовать разные сценарии («what-if») без лишних затрат.
📌 Вывод: традиционный SQL не подходит для эпохи LLM. Нужны базы, которые понимают стратегию агента, сокращают лишние шаги и экономят ресурсы.
🔗 Paper: arxiv.org/abs/2509.00997
#AI #Databases #LLM #Agents
Когда LLM-агенты работают с БД, они не делают один большой запрос. Вместо этого они засыпают систему тысячами мелких пробных запросов: проверяют структуру, ищут связи, тестируют планы. Это явление получило название agentic speculation. Итог — колоссальный перерасход ресурсов.
🆕 Исследователи предлагают «agent-first database» — базу, спроектированную с учётом поведения агентов.
🔑 Как это работает:
- Агент отправляет не просто SQL-запрос, а пробу с брифом: какая цель, на каком этапе он сейчас, какая нужна точность и что в приоритете.
- База может дать приближённый ответ, если данных уже достаточно, вместо того чтобы тратить ресурсы на полный расчёт.
- Запросы поддерживают семантический поиск по таблицам и строкам, что в SQL выразить сложно.
⚙️ Внутренние механизмы:
- Sleeper agents подсказывают лучшие join’ы, объясняют пустые результаты и оценивают стоимость запросов.
- Оптимизатор проб объединяет похожие запросы, кэширует частичные результаты и выдаёт быстрые ответы, когда «достаточно сигнала».
- Agentic memory хранит знания, которые можно переиспользовать в будущем.
- Общий менеджер транзакций позволяет быстро пробовать разные сценарии («what-if») без лишних затрат.
📌 Вывод: традиционный SQL не подходит для эпохи LLM. Нужны базы, которые понимают стратегию агента, сокращают лишние шаги и экономят ресурсы.
🔗 Paper: arxiv.org/abs/2509.00997
#AI #Databases #LLM #Agents
👍5🤔3
Forwarded from Machinelearning
Google Research придумали новый способ сделать большие языковые модели быстрее и дешевле.
Что это такое:
Сначала отвечает маленькая модель. Если задача слишком сложная - подключается большая. Так экономятся ресурсы, но качество может прыгать.
Маленькая модель угадывает сразу несколько слов вперёд. Большая быстро проверяет данные и подтверждает. Скорость выше, но большая модель всё равно тратит много ресурсов.
Это комбинация: маленькая модель иногда отвечает полностью сама, а иногда используется как ускоритель для большой. В итоге получаем меньше затрат, больше скорости и то же качество.
- быстрее, чем обычная спекулятивная декодировка
- дешевле и качественнее, чем каскады
- удобнее настраивать баланс «скорость ↔ качество»
При том же уровне качества, что и у спекулятивной декодировки, новый метод работает быстрее (генерирует больше токенов за один вызов большой модели).
А в задачах математических рассуждений получен явный апгрейд по скорости при сохранении или даже улучшении качества.
LLM всё чаще используются в поиске, чатах, ассистентах. Чтобы они реально были полезными, их нужно ускорять и удешевлять. *Speculative cascades* помогают это сделать без потери качества.
🔗 Подробнее: https://research.google/blog/speculative-cascades-a-hybrid-approach-for-smarter-faster-llm-inference/
@ai_machinelearning_big_data
#AI #LLM #Inference #SpeculativeDecoding #Cascades #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍1
Forwarded from Machinelearning
Anthropic описывает, как правильно создавать инструменты (tools) для AI-агентов: так, чтобы они были максимально полезными, эффективными и надёжными. Особый акцент сделан на том, как использовать самих агентов для прототипирования, тестирования и оптимизации инструментов.
Как писать эффективные инструменты для агентов
- Делай быстрые прототипы и сразу проверяй, как агент с ними работает.
- Тестируй на реальных сценариях, а не на абстрактных примерах.
- Анализируй логи и поведение агента, чтобы находить ошибки и непонятные места.
- Избегай дублирования: один инструмент должен выполнять одну чёткую задачу.
- Используй понятные имена и структуры (`machinelearning_create_task`, `mla_list_users`).
- Возвращай только нужные данные, не перегружай ответ лишним. Добавляй фильтрацию и пагинацию.
- Пиши описания так, чтобы их понял даже человек, который не в теме: чётко, без двусмысленностей, с примерами входа и выхода.
Что это дает:
- Улучшает способность AI-агентов решать реальные задачи.
- Минимизирует ошибки: неверное использование инструментов, лишние токены, избыточные вызовы.
- Повышает надёжность и предсказуемость поведения агентов.
- Упрощает масштабирование — добавление новых инструментов и задач.
@ai_machinelearning_big_data
#Anthropic #claude #aiagents #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Это vision-language модель, которая умеет управлять графическими интерфейсами, писать код, строить диаграммы в Draw.io по макетам и распознавать объекты в самых разных областях - от повседневной жизни до узкоспециализированных сфер. Среди ключевых возможностей: точное определение событий в видео продолжительностью до двух часов, расширение поддержки OCR с 19 до 32 языков с улучшением качества на редких символах и наклонном тексте, работа с контекстом длиной 256 тысяч токенов с возможностью увеличения до миллиона, а также высокая точность в задачах обнаружения рисков в реальных условиях.
HF
Исследователи показали, что foundation-модели могут обучаться в стиле few-shot, то есть адаптироваться к новой задаче прямо «на лету», без отдельного переобучения.
В основе подхода лежит TimesFM, расширенный методом in-context fine-tuning (TimesFM-ICF). Модель получает несколько примеров вместе с историей данных и учится делать прогнозы более точно. В экспериментах на 23 датасетах точность выросла на 6,8% по сравнению с базовой моделью, при этом качество оказалось сопоставимо с версиями, обученными специально под каждый набор данных.
Теперь модели временных рядов можно использовать как LLM: им достаточно нескольких примеров в контексте, чтобы подстроиться под задачу. Это открывает путь к более гибкому и простому применению таких систем в бизнесе, финансах, энергетике и других областях.
Главная идея в том, что вместо ручного конструирования симуляций теперь можно задавать цель в виде текста, а модель будет находить или создавать такие системы, где возникают жизнеподобные явления.
ASAL работает на разных субстратах - от классических Boids и Game of Life до Lenia, Particle Life и нейронных клеточных автоматов. В ходе экспериментов метод открыл новые формы поведения в Lenia и Boids, а также клеточные автоматы, способные демонстрировать открытое и сложное развитие, сравнимое с «Жизнью» Конвея.
Это открывает путь к ускоренному исследованию искусственной жизни и автоматическому открытию новых «жизнеподобных» систем, которые раньше приходилось искать вручную.
По результатам тестов Qwen3-Max выходит на уровень топовых моделей на таких бенчмарках, как SWE-Bench, Tau2-Bench, SuperGPQA, LiveCodeBench и AIME25. Модель построена на масштабном датасете и опирается на значительные вычислительные мощности как в предобучении, так и в RL.
Компания позиционирует Qwen3-Max как новый флагман и открывает доступ сразу на нескольких платформах: в Qwen Chat, через API Alibaba Cloud и в блоге разработчиков.
X
Доверие остаётся ограниченным: 46% доверяют «отчасти», 23% — «немного», и только 20% - «сильно». Это объясняется частыми мелкими исправлениями после автогенерации. Влияние на качество кода оценивается сдержанно: 31% видят лёгкое улучшение, 30% — «без изменений». Зато ощутим рост скорости за счёт снижения рутины.
На рынке труда обстановка сложнее: вакансии для новичков сократились на 71% с 2022 года, а кандидаты подают сотни заявок, прежде чем получить работу.
Report
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍1
🚀 Новое исследование: Reinforcement Learning on Pre-training Data (RLPT)
Этот метод решает главную проблему масштабирования LLM — ограниченность размеченного текста.
🌟 RLPT даёт моделям возможность учиться рассуждениям напрямую на данных предобучения, без дорогой ручной разметки.
Как это работает:
1️⃣ Модель во время обучения сама исследует данные и учится более общим стратегиям рассуждений.
2️⃣ Никакой дополнительной разметки — награды извлекаются прямо из предобучающих данных.
3️⃣ Награды за предсказание следующего сегмента позволяют масштабировать RL на этапе предобучения.
Результаты:
✅ На Qwen3-4B-Base прирост: +3.0 (MMLU), +5.1 (MMLU-Pro), +8.1 (GPQA-Diamond), +6.0 (KOR-Bench), +6.6 (AIME24), +5.3 (AIME25).
✅ Чем больше вычислений, тем сильнее рост.
✅ Технология создаёт базу для дальнейших улучшений в RLVR.
📄 Подробнее: https://arxiv.org/pdf/2509.19249
#AI #RLPT #LLM #MachineLearning #NLP
Этот метод решает главную проблему масштабирования LLM — ограниченность размеченного текста.
🌟 RLPT даёт моделям возможность учиться рассуждениям напрямую на данных предобучения, без дорогой ручной разметки.
Как это работает:
1️⃣ Модель во время обучения сама исследует данные и учится более общим стратегиям рассуждений.
2️⃣ Никакой дополнительной разметки — награды извлекаются прямо из предобучающих данных.
3️⃣ Награды за предсказание следующего сегмента позволяют масштабировать RL на этапе предобучения.
Результаты:
✅ На Qwen3-4B-Base прирост: +3.0 (MMLU), +5.1 (MMLU-Pro), +8.1 (GPQA-Diamond), +6.0 (KOR-Bench), +6.6 (AIME24), +5.3 (AIME25).
✅ Чем больше вычислений, тем сильнее рост.
✅ Технология создаёт базу для дальнейших улучшений в RLVR.
📄 Подробнее: https://arxiv.org/pdf/2509.19249
#AI #RLPT #LLM #MachineLearning #NLP
❤3👍3🔥1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Новая флагманская модель получила заметные улучшения: поддержка длинного контекста до 200K токенов, сильные возможности в рассуждении, генерации кода, поиска и агентных задачах.
Hf | Api | Попробовать
Newton - это открытый физический движок с GPU-ускорением, созданный на базе NVIDIA Warp и OpenUSD и выпущенный под лицензией Apache 2.0. Он показывает огромный прирост скорости: в задачах движения до 152× быстрее, а при манипуляции объектами — до 313× быстрее по сравнению с MJX на RTX 4090.
Isaac Lab позволяет запускать тысячи параллельных симуляций для ускоренного обучения с подкреплением. Среди демонстраций — робот ANYmal, осваивающий ходьбу, и симуляция складывания одежды с реалистичной мультифизикой.
NVIDIA Blog
Главная идея - контекст не равен простому prompt’у: это весь набор информации (инструкции, история сообщений, память, внешние данные), который агент использует для принятия решений.
Контекст - ограниченный ресурс, длинные цепочки приводят к «context rot» - постепенной потере качества.
Нужно уметь структурировать и минимизировать инструкции, оставляя только важное.
Важно грамотно управлять вызовами инструментов: они должны возвращать релевантные и компактные данные.
Историю лучше периодически сжимать, сохраняя факты, а не «сырые токены».
Для сложных случаев полезно делить задачи между суб-агентами, а затем агрегировать их результаты.
Эффективная контекстная инженерия делает агентов точнее, дешевле и устойчивее при работе с длинными
Подробнее
Новая 15B reasoning-модель с открытыми весами набрала 52 балла в Artificial Analysis Intelligence Index - уровень моделей в сотни миллиардов параметров. Отличается сильным instruction following, многошаговыми диалогами и поддержкой 128k контекста. Доступна на Hugging Face под MIT-лицензией для свободного коммерческого использования.
HF
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
⚡ Новая работа про ускорение видео-диффузии — представляют SLA (Selective Linear Attention), обучаемый гибридный механизм внимания.
🎯 В чём идея:
- Обычное Attention растёт квадратично по длине — для длинных видео это огромные затраты.
- SLA делит внимание на три типа: критическое, несущественное и промежуточное.
- Критическое обрабатывается через FlashAttention, несущественное — пропускается, промежуточное — через линейное внимание.
- Быстрый шаг mean pooling заранее помечает блоки, экономя вычисления.
📈 Результаты:
- Снижение вычислений в attention на 95%.
- Генерация стала в 2.2 раза быстрее на 1.3B видеомодели.
- Достаточно короткого fine-tuning — полное переобучение не нужно.
- Качество при этом не падает — линейное внимание в роли вспомогательного сохраняет точность, а высокие веса ведут себя как многомерные паттерны, низкие — хорошо сжимаются.
📄 Paper: https://arxiv.org/abs/2509.24006
#AI #diffusion #video #deeplearning
🎯 В чём идея:
- Обычное Attention растёт квадратично по длине — для длинных видео это огромные затраты.
- SLA делит внимание на три типа: критическое, несущественное и промежуточное.
- Критическое обрабатывается через FlashAttention, несущественное — пропускается, промежуточное — через линейное внимание.
- Быстрый шаг mean pooling заранее помечает блоки, экономя вычисления.
📈 Результаты:
- Снижение вычислений в attention на 95%.
- Генерация стала в 2.2 раза быстрее на 1.3B видеомодели.
- Достаточно короткого fine-tuning — полное переобучение не нужно.
- Качество при этом не падает — линейное внимание в роли вспомогательного сохраняет точность, а высокие веса ведут себя как многомерные паттерны, низкие — хорошо сжимаются.
📄 Paper: https://arxiv.org/abs/2509.24006
#AI #diffusion #video #deeplearning
❤4
Forwarded from Machinelearning
Это подборка интерактивных ноутбуков, демонстрирующих возможности Qwen3-VL - как при локальном запуске, так и через API.
Внутри - десятки реальных примеров с разборами:
▪ Работа с изображениями и рассуждение по ним
▪ Агент для взаимодействия с интерфейсами (Computer-Use Agent)
▪ Мультимодальное программирование
▪ Распознавание объектов и сцен (Omni Recognition)
▪ Продвинутое извлечение данных из документов
▪ Точное определение объектов на изображении
▪ OCR и извлечение ключевой информации
▪ 3D-анализ и привязка объектов
▪ Понимание длинных документов
▪ Пространственное рассуждение
▪ Мобильный агент
▪ Анализ и понимание видео
@ai_machinelearning_big_data
#Qwen #Qwen3VL #AI #VisionLanguage #Multimodal #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍4
Forwarded from Machinelearning
⚡️ Glyph: масштабирование контекста через визуально-текстовую компрессию
В основе модели лежит простая идея : вместо того чтобы кормить модели километровый текст, Glyph превращает его в изображение и обрабатывает через vision-language модель.
Используется LLM-управляемый генетический алгоритм, чтобы подобрать наилучшие параметры визуального отображения текста (шрифт, плотность, макет), балансируя между сжатием и точностью.
Это радикально снижает вычислительные затраты, сохраняя при этом смысловую структуру текста.
При этом точность почти не падает: на задачах с длинным контекстом Glyph работает на уровне современных моделей вроде Qwen3-8B.
При экстремальном сжатии VLM с контекстом 128K может эффективно обрабатывать задачи, эквивалентные 1M+ токенов в традиционных LLM.
Фактически, длинный контекст становится мультимодальной задачей, а не чисто текстовой.
📄 Подробности: arxiv.org/abs/2510.17800
🧩 Веса: huggingface.co/zai-org/Glyph
👉 Репозиторий: github.com/thu-coai/Glyph
@ai_machinelearning_big_data
#AI #LLM #Multimodal #Research #DeepLearning
В основе модели лежит простая идея : вместо того чтобы кормить модели километровый текст, Glyph превращает его в изображение и обрабатывает через vision-language модель.
Используется LLM-управляемый генетический алгоритм, чтобы подобрать наилучшие параметры визуального отображения текста (шрифт, плотность, макет), балансируя между сжатием и точностью.
Это радикально снижает вычислительные затраты, сохраняя при этом смысловую структуру текста.
При этом точность почти не падает: на задачах с длинным контекстом Glyph работает на уровне современных моделей вроде Qwen3-8B.
При экстремальном сжатии VLM с контекстом 128K может эффективно обрабатывать задачи, эквивалентные 1M+ токенов в традиционных LLM.
Фактически, длинный контекст становится мультимодальной задачей, а не чисто текстовой.
📄 Подробности: arxiv.org/abs/2510.17800
🧩 Веса: huggingface.co/zai-org/Glyph
👉 Репозиторий: github.com/thu-coai/Glyph
@ai_machinelearning_big_data
#AI #LLM #Multimodal #Research #DeepLearning
👨💻1
Forwarded from Machinelearning
🔥 Hugging Face снова выкатили полезные материалы
Вышла бесплатная плейбук о том, как изнутри строят SOTA-модели.
Без общих слов - только реальные решения и нюансы, которые обычно скрыты внутри исследовательских команд.
Это полноценный playbook для тех, кто хочет понимать, как утсрены современные LLM.
Что внутри:
• Логика построения модели: зачем → что → как
• Как разработчики берут модель и по частям включают/выключают компоненты (или меняют их)
• Архитектура: ключевые выборы и trade-offs
• Искусство подбора и очистки данных
• Как проходит обучение моделей
• Пост-тренинг и RLHF в 2025
• Инфраструктура больших моделей
По первым страницам - уровень деталей как в Ultra-scale playbook.
Ссылка: https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook#designing-the-model-architecture
@ai_machinelearning_big_data
#AI #LLM #MachineLearning #HuggingFace
Вышла бесплатная плейбук о том, как изнутри строят SOTA-модели.
Без общих слов - только реальные решения и нюансы, которые обычно скрыты внутри исследовательских команд.
Это полноценный playbook для тех, кто хочет понимать, как утсрены современные LLM.
Что внутри:
• Логика построения модели: зачем → что → как
• Как разработчики берут модель и по частям включают/выключают компоненты (или меняют их)
• Архитектура: ключевые выборы и trade-offs
• Искусство подбора и очистки данных
• Как проходит обучение моделей
• Пост-тренинг и RLHF в 2025
• Инфраструктура больших моделей
По первым страницам - уровень деталей как в Ultra-scale playbook.
Ссылка: https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook#designing-the-model-architecture
@ai_machinelearning_big_data
#AI #LLM #MachineLearning #HuggingFace
❤4🔥4🥰1
📘 CocoIndex: Knowledge Graph for Documents
Отличный пример того, как можно создавать граф знаний в реальном времени на основе документов с помощью CocoIndex.
🔍 Основные идеи:
- Используется LLM для извлечения связей между сущностями и построения графа знаний.
- Поддерживается экспорт узлов и отношений в графовые базы данных, такие как Neo4j или Kuzu.
- Пример пайплайна на Python: добавление источников, извлечение сущностей, формирование связей и экспорт.
- После построения можно выполнять графовые запросы вроде
📎 Подробнее:
https://cocoindex.io/docs/examples/knowledge-graph-for-docs
#AI #KnowledgeGraph #RAG #CocoIndex
Отличный пример того, как можно создавать граф знаний в реальном времени на основе документов с помощью CocoIndex.
🔍 Основные идеи:
- Используется LLM для извлечения связей между сущностями и построения графа знаний.
- Поддерживается экспорт узлов и отношений в графовые базы данных, такие как Neo4j или Kuzu.
- Пример пайплайна на Python: добавление источников, извлечение сущностей, формирование связей и экспорт.
- После построения можно выполнять графовые запросы вроде
MATCH p=()-->() RETURN p.📎 Подробнее:
https://cocoindex.io/docs/examples/knowledge-graph-for-docs
#AI #KnowledgeGraph #RAG #CocoIndex
👍6❤2🔥2