а) Доказать, что для любых 4 векторов на плоскости выполняется соотношение типа Птолемея/Плюккера:
s(12)s(34)-s(13)s(24)+s(14)s(23)=0,
где s(ij) — ориентированная площадь натянутого на вектора i и j треугольника.
б) Вывести отсюда утверждение https://tttttt.me/geometrykanal/2499 про площадь пятиугольника.
s(12)s(34)-s(13)s(24)+s(14)s(23)=0,
где s(ij) — ориентированная площадь натянутого на вектора i и j треугольника.
б) Вывести отсюда утверждение https://tttttt.me/geometrykanal/2499 про площадь пятиугольника.
Telegram
Геометрия-канал
В пятиугольнике ABCDE площади треугольников ABC, BCD, CDE, DEA и EAB равны a, b, c, d и e. Доказать, что площадь всего пятиугольника является корнем уравнения
S² −S(a+b+c+d+e)+(ab+bc+cd+de+ea)=0.
// задачу предложил Мёбиус в 1823 году
S² −S(a+b+c+d+e)+(ab+bc+cd+de+ea)=0.
// задачу предложил Мёбиус в 1823 году
Трисекция углов с помощью некоторых коник. По мотивам проекта про трисекцию на последнем ЛКТГ.
Forwarded from NeuroGeometry (Петр Ким)
Хотели бы сделать объявление:
С 18 по 23 августа на аопсе (ссылка ниже) будет проходить очень интересная олимпиада MGO 2024.
Составители задач - очень опытные геометры, среди них есть:
- Жюри олимпиады Шарыгина
- Золотые медалисты уровня Advanced Иранской геометрической Олимпиады
- Победители SAGF и Discord Geometry Olympiad
- Победители ВСОШ и кандидаты в сборную России на Международную Математическую Олимпиаду
Сложность задач будет достаточно высока: по шкале Imo Shortlist:
p1/p4 - G4
p2/p5 - G6/G7
p3/p6 - G8+
При этом в отличии от других олимпиад по геометрии высокой сложности на этой олимпиаде не будет:
- нагромождённых конструкций (все условия не более 4 строк в длину и обладают поразительной красотой)
- сложных объектов (каких-нибудь никому не известных замечательных точек, коник, или кубик)
- геометрических неравенств или комбинаторной геометрии
От себя могу добавить, что на мой взгляд, на этой олимпиаде будет несколько задач, которые могут претендовать на звание самых красивых задач в истории. Всем рекомендую поучаствовать!
https://artofproblemsolving.com/community/c594864h3379839_mgo_2024_announced
С 18 по 23 августа на аопсе (ссылка ниже) будет проходить очень интересная олимпиада MGO 2024.
Составители задач - очень опытные геометры, среди них есть:
- Жюри олимпиады Шарыгина
- Золотые медалисты уровня Advanced Иранской геометрической Олимпиады
- Победители SAGF и Discord Geometry Olympiad
- Победители ВСОШ и кандидаты в сборную России на Международную Математическую Олимпиаду
Сложность задач будет достаточно высока: по шкале Imo Shortlist:
p1/p4 - G4
p2/p5 - G6/G7
p3/p6 - G8+
При этом в отличии от других олимпиад по геометрии высокой сложности на этой олимпиаде не будет:
- нагромождённых конструкций (все условия не более 4 строк в длину и обладают поразительной красотой)
- сложных объектов (каких-нибудь никому не известных замечательных точек, коник, или кубик)
- геометрических неравенств или комбинаторной геометрии
От себя могу добавить, что на мой взгляд, на этой олимпиаде будет несколько задач, которые могут претендовать на звание самых красивых задач в истории. Всем рекомендую поучаствовать!
https://artofproblemsolving.com/community/c594864h3379839_mgo_2024_announced
а4) Четырехугольник вписан в конику и описан вокруг коники. Теорема Понселе говорит, что тогда четырехугольник можно “вращать” с сохранением вписанности и описанности. Доказать, что точки пересечения противоположных сторон всё время лежат на одной прямой.
б4) Полный четырехсторонник вписан в кубику и описан вокруг коники. Доказать, что четырехсторонник можно “вращать” с сохранением вписанности и описанности (предыдущий пункт соответствует кубике, распадающейся в объединение коники и прямой).
// via П.Бибиков: https://vk.com/wall840911_606
б4) Полный четырехсторонник вписан в кубику и описан вокруг коники. Доказать, что четырехсторонник можно “вращать” с сохранением вписанности и описанности (предыдущий пункт соответствует кубике, распадающейся в объединение коники и прямой).
// via П.Бибиков: https://vk.com/wall840911_606
а5) Пятиугольник вписан в конику и описан вокруг коники. Теорема Понселе говорит, что тогда его можно “вращать” с сохранением вписанности и описанности. Доказать, что точки пересечения продолжений сторон всё время лежат на одной конике.
б5) Полный пятисторонник вписан в квартику. Доказать, что его можно “вращать” с сохранением вписанности — и что все такие пятисторонники касаются одной коники (предыдущий пункт соответствует квартике, распадающейся в объединение двух коник). // Lüroth, 1868
Upd: и дальше то же самое, говорят ; (Дарбу)
б5) Полный пятисторонник вписан в квартику. Доказать, что его можно “вращать” с сохранением вписанности — и что все такие пятисторонники касаются одной коники (предыдущий пункт соответствует квартике, распадающейся в объединение двух коник). // Lüroth, 1868
Upd: и дальше то же самое, говорят ; (Дарбу)
у коллег из GetAClass вышел новый ролик,
https://youtu.be/oA7-_0eHdp8
«Представьте себе, что вы взяли обычный прямой круговой конус — тот, что вы изучали в школе — и нарезали его на тонкие круговые дольки параллельно основанию. А теперь сдвиньте эти дольки равномерно относительно друг друга, и у вас получится косой круговой конус.
И вот оказывается, что этот наклонный конус можно нарезать на круговые дольки вторым способом, рассекая его другим семейством плоскостей под углом к основанию!
Попробуйте догадаться, как это сделать, а потом доказать, что в сечениях действительно получаются круги…»
https://youtu.be/oA7-_0eHdp8
«Представьте себе, что вы взяли обычный прямой круговой конус — тот, что вы изучали в школе — и нарезали его на тонкие круговые дольки параллельно основанию. А теперь сдвиньте эти дольки равномерно относительно друг друга, и у вас получится косой круговой конус.
И вот оказывается, что этот наклонный конус можно нарезать на круговые дольки вторым способом, рассекая его другим семейством плоскостей под углом к основанию!
Попробуйте догадаться, как это сделать, а потом доказать, что в сечениях действительно получаются круги…»
Forwarded from Геометрия с Ниловым
Отличная книжка про коники. Лучше смотреть 2 издание, но не нашел его в свободном доступе.
https://old.mccme.ru/free-books/akopyan/Zaslavky-Akopyan.pdf
https://old.mccme.ru/free-books/akopyan/Zaslavky-Akopyan.pdf
Было бы также интересно посмотреть на статистику по другим олимпиадам.
https://habr.com/ru/articles/837336/
https://habr.com/ru/articles/837336/
Хабр
Стала ли AlphaGeometry прорывом в ИИ?
Примерно полгода назад математическое сообщество услышало новость о том, что исследователи DeepMind создали ИИ-систему, решающую геометрические задачи с Международной математической олимпиады на...
Было бы интересно сделать подборку сюжетов, в которых геометрия переплетается с физикой. Если кто-то знает нестандартные - напишите в комментах
Forwarded from Непрерывное математическое образование
YouTube
Удивительная связь физики и геометрии!
Может ли классическая механика и законы оптики выручить в сложных геометрических задачах? Трудно представить, но бывает и такое!
Поддержите канал Wild Mathing! https://boosty.to/wildmathing
Мои курсы: https://vk.com/market-135395111
VK: https://vk.com/wildmathing…
Поддержите канал Wild Mathing! https://boosty.to/wildmathing
Мои курсы: https://vk.com/market-135395111
VK: https://vk.com/wildmathing…
Forwarded from Фулл и точка
Как мы говорили раньше, коники иногда неожиданно помогают придумать классное и короткое решение сложной задачи 💪
Так случилось на летней школе в Казани с одной из задач по мотивам проекта ЛКТГ-2015, которая была в листике Павла Александровича Кожевникова.
Участник нашего проекта и наш подписчик Иванов Госман придумал ранее неизвестное крутое решение при помощиполяр и гиперболы F (о которой см. предыдущий пост) .
Поздравляем Госмана 🥳
Публикуем условие задачи. Подумайте над ней и вы 🤔
Вдруг родится еще одна новая идея 💡
Задача. В остроугольном треугольнике 𝐴𝐵𝐶 проведены высоты 𝐴𝐻𝑎, 𝐵𝐻𝑏 и 𝐶𝐻𝑐.
Точки I и O — соответственно центры вписанной и вневписанной окружностей.
Докажите, что если I лежит на 𝐻𝑏𝐻𝑐, то прямая OI проходит через 𝐻𝑎.
Так случилось на летней школе в Казани с одной из задач по мотивам проекта ЛКТГ-2015, которая была в листике Павла Александровича Кожевникова.
Участник нашего проекта и наш подписчик Иванов Госман придумал ранее неизвестное крутое решение при помощи
Поздравляем Госмана 🥳
Публикуем условие задачи. Подумайте над ней и вы 🤔
Вдруг родится еще одна новая идея 💡
Задача. В остроугольном треугольнике 𝐴𝐵𝐶 проведены высоты 𝐴𝐻𝑎, 𝐵𝐻𝑏 и 𝐶𝐻𝑐.
Точки I и O — соответственно центры вписанной и вневписанной окружностей.
Докажите, что если I лежит на 𝐻𝑏𝐻𝑐, то прямая OI проходит через 𝐻𝑎.
в личные сообщения написали вопрос, где можно прочитать про применения выхода в комплексные числа в вещественной геометрии — мб что-нибудь посоветуете?
(имеется в виду не параметризация точек плоскости комплексными числами, а выход из R(P)² в C(P)² — e.g. радикальная ось как вещественная прямая через две комплексные точки пересечения, общие точки всех окружностей, афф. эквивалентность гипербол и окружностей [над C] и проч.)
(имеется в виду не параметризация точек плоскости комплексными числами, а выход из R(P)² в C(P)² — e.g. радикальная ось как вещественная прямая через две комплексные точки пересечения, общие точки всех окружностей, афф. эквивалентность гипербол и окружностей [над C] и проч.)