Задача 8 из олимпиады 239, которая прошла недавно. Предлагалась для 8-9 класса. Остальные задачи можно найти тут.
Вписанная окружность прямоугольного треугольника ABC касается его гипотенузы BC в точке D. Прямая AD пересекает описанную окружность в точке X.
Докажите, что |BX − CX| ≥ |AD − DX|.
Вписанная окружность прямоугольного треугольника ABC касается его гипотенузы BC в точке D. Прямая AD пересекает описанную окружность в точке X.
Докажите, что |BX − CX| ≥ |AD − DX|.
Forwarded from Геометрия от Волчкевича
Треугольник с углами 40, 60 и 80 градусов.
Пожалуй самую красивую задачу, которую я придумал за последний год, вчера решали семиклассники на Московской устной олимпиаде. Само собой, что она была быть им по возрасту, то есть должна иметь решение без счета и тригонометрии. Предлагаю вам над ней тоже подумать. Обещаю: получите большое удовольствие!
Пожалуй самую красивую задачу, которую я придумал за последний год, вчера решали семиклассники на Московской устной олимпиаде. Само собой, что она была быть им по возрасту, то есть должна иметь решение без счета и тригонометрии. Предлагаю вам над ней тоже подумать. Обещаю: получите большое удовольствие!
Геометрия-канал
синий треугольник вписан в параболу; касательные в его вершинах образуют зеленый треугольник — доказать, что его площадь вдвое меньше площади синего // задача M2831 из Кванта, предложил М.Панов
JMO 2017.
Дан правильный треугольник ABC и точка P на его описанной окружности. Прямые AP,BP,CP пересекают прямые BC,AC,AB в точках D,E,F соответственно. Докажите, что площадь DEF в два раза больше, чем у ABC.
Попробуйте понять связь c этой задачей)
Дан правильный треугольник ABC и точка P на его описанной окружности. Прямые AP,BP,CP пересекают прямые BC,AC,AB в точках D,E,F соответственно. Докажите, что площадь DEF в два раза больше, чем у ABC.
Попробуйте понять связь c этой задачей)