Геометрия-канал
9.65K subscribers
955 photos
28 videos
107 files
809 links
Решаем задачи по геометрии каждый день.

Автор — Наталья Нетрусова @natnetint
Чат https://tttttt.me/joinchat/DxYaB0QLindiVZpW32-rfQ

По вопросам рекламы: @natnetint
Download Telegram
Equilateral.pdf
278.7 KB
Листик про равносторонние треугольники для начинающих геометров
ПОЛЕЗНЫЕ МАТЕРИАЛЫ

Для наших новых подписчиков делаю обзор материалов, которые я выкладывал в сентябре прошлого года:

- Презентация по теме «Первые учёные»
- Работа на повторение 7 класса
- Работа на повторение 8 класса
- Материалы к параграфу «Точка, прямая, плоскость»
- Подборка задач на повторение вписанных углов для 9 класса
- Листок по знакам и кванторам
- Работа по единицам измерения для 7 класса
- Варианты контрольных на параллелограммы и прямоугольники для 8 класса
- Контрольная для 7 класса

Нужно ли в будущем делать такие обзоры? Если да, поставьте 👍
Forwarded from Фулл и точка
Одна из наших любимых задач с подвохом 😏
Решается быстро, но точно ли верно? 😁

Задача. В выпуклом четырехугольнике 𝐴𝐵𝐶𝐷 биссектрисы углов 𝐵 и 𝐶 пересекаются в середине 𝑀 стороны 𝐴𝐷. Выразите угол 𝐴 через угол 𝐷.
недавно здесь обсуждался предельный случай теоремы ван Обеля

а вот заметка в Квантике про теорему Наполеона, теорему ван Обеля и обобщения:

https://old.kvantik.com/art/files/pdf/2023-11.24-25.pdf
Доказательство теоремы ван Обеля. Источник.
Forwarded from Денис Егоров 🌳
This media is not supported in your browser
VIEW IN TELEGRAM
#начинающим

Прямоугольник разрезали на семь квадратов. Площадь одного из маленьких квадратов равна 1. Найдите площадь всего прямоугольника.
Вариация теоремы о равенстве вписанных углов.

Синяя окружность дважды касается эллипса с фокусом F. Докажите равенство зеленых углов.
Forwarded from Математические байки (Victor Kleptsyn)
This media is not supported in your browser
VIEW IN TELEGRAM
Как ещё увидеть, что проекция тетраэдра Серпинского вдоль линии, соединяющей середины противоположных рёбер, это квадрат?
Очень просто: нужно взять тетраэдр Серпинского, ясную, солнечную погоду и выйти на улицу.
И.И. Богданов, финал Шарыгина 2010, 8 класс, 4 задача
Square.pdf
294.5 KB
Листик про квадраты для начинающих геометров
Forwarded from Dima Shvetsov
Квадрты_7_8.pdf
143.4 KB
Поддержим волну! Листок этой недели про квадраты для вчерашних семиклассников на основе замечательной книги А.Д. Блинкова «Геометрия стандартная и не очень». Для решения задач достаточно материала седьмого класса!
Олимпиада ЮМШ. Отборочный тур. 10 класс. Дан равносторонний треугольник ABC. Пусть M — середина отрезка BC. Точка D симметрична точке A относительно точки B, а точка
K — основание перпендикуляра, опущенного из точки C на прямую MD.
Докажите, что K лежит на вписанной окружности треугольника ABC.
Олимпиада ЮМШ. Отборочный тур. 11 класс. На кривой xy = 1 (x > 0, y > 0) даны две точки A и B. Касательные
к кривой в точках A и B пересекаются в точке F . Пусть M — середина
отрезка AB, O — начало координат. Докажите, что (MO * MF)/
(MA * MB) не зависит от точек A и B.
Раз уж пошла мода выкладывать листки выложу еще один. Листки я начал делать недавно так, что делаю это наверное не очень хорошо. Ну и ладно. Вот мой первый листок, который я выдавал. Тема листка "Нулевая окружность", то есть обсуждается радикальная ось точки(нулевой окружности) и окружности. По-моему очень красивая тема для которой не нужно знать много теории, поэтому мне захотелось сделай свой первый листик про нее)
#начинающим

На рисунке изображен паркет из равных прямоугольных треугольников. Произвольные прямоугольные треугольники для такой схемы не подойдут.

Найдите соотношение сторон в этих треугольниках.

Рисунок и задача из журнала «Квантик» №7, 2017, статья Сергея Маркелова «Жесткие паркеты»
Forwarded from Фулл и точка
#геом_разминка

Задача.
В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите
углы этого треугольника.