Big Data AI
16.8K subscribers
908 photos
117 videos
19 files
911 links
@haarrp - админ

Вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейроннным сетям

@data_analysis_ml - анализ данных

@ai_machinelearning_big_data

@itchannels_telegram - важное для программиста

РКН: clck.ru/3Fmqxe
Download Telegram
🐦 X открыл исходники алгоритма "For You"

Как работает лента рекомендаций в 7 шагах:

1️⃣ Сырые данные (вход):
- соцграф (кто кого фолловит),
- вовлечённость (лайки, ретвиты, ответы, закладки),
- данные о пользователе (клики, профиль, поведение).

2️⃣ Feature Engineering:
- GraphJet — граф твитов в реальном времени
- SimClusters — объединение в коммьюнити ("AI Twitter", "NBA Twitter")
- TwHIN — карта связей пользовательтвит
- RealGraph — сила связей
- TweepCred — скоринг доверия
- Trust & Safety сигналы

3️⃣ Candidate Sourcing (Home Mixer):
Разные миксеры (CR Mixer, UTEG, FRS) вытягивают твиты из разных пулов → больше разнообразия.

4️⃣ Heavy Ranker (ML-модель):
Нейросеть предсказывает, что вам зайдёт: лайки, ретвиты, ответы, время чтения.

5️⃣ Фильтры и эвристики:
- социальное доказательство
- разнообразие авторов
- блок спама/NSFW/мутов
- баланс контента
- защита от «замыливания»

6️⃣ Микс:
Рекламные твиты + рекомендации «кого фолловить» → в ленту.

7️⃣ Что это значит для вас:
- выбери нишу
- пиши ценные посты
- отвечай по делу в своей теме
→ вырастишь аудиторию и найдёшь людей/идеи для бизнеса.


https://github.com/twitter/the-algorithm

#Twitter #ForYou #AI #RecommenderSystems
🔥1