Forwarded from Machinelearning
NVIDIA представила новую модель автоматического распознавания речи (ASR) — Parakeet-tdt-0.6b-v2 c 600 млн. параметров для английского языка. Она не просто транскрибирует аудио в текст, но и распознает пунктуацию, капитализацию и временные метки с точностью до слова.
Модель устойчива к шумам и справляется даже с расшифровкой песен или чисел. Это достигнуто за счет обучения на данных, в которые включили «шумные» источники (YouTube, записи телефонных разговоров и уличные диалоги). Как отмечают авторы, RTFx-показатель равен 3380 (при батче 128), что позволяет использовать Parakeet для масштабных промышленных задач.
В основе Parakeet - гибридная архитектура. Она комбинирует скоростной кодировщик FastConformer с декодером TDT, который оптимизирован для транскрипции.
TDT - декодер, который предсказывает слова, звуки и их длительность. Вместо того чтобы проверять каждый кусочек аудиозаписи по порядку, TDT «перепрыгивает» через лишние сегменты, опираясь на прогноз времени, которое занимает текущий токен. Это сокращает вычисления, экономит время и при этом не теряется точность.
Fast Conformer — это переработанная архитектура Conformer, которая ускоряет распознавание речи за счет увеличения downsampling до 8x с помощью более легких сверток и упрощенных блоков, и замены стандартного внимания на комбинацию локального контекста и одного глобального токена.
Обучение Parakeet проводилось в 2 этапа: сначала на 128 GPU A100 с использованием псевдоразмеченных данных, а затем — на 500 часах человеческой транскрипции. Часть обучающего датасета пока недоступна публично, их NVIDIA обещает открыть после конференции Interspeech 2025.
Результаты на бенчмарке Open ASR впечатляют: средняя ошибка (WER) составляет всего 6.05% при greedy decoding без внешней языковой модели. Для сравнения, на чистом аудио из LibriSpeech WER составляет 1.69%, а сильном зашумлении (SNR 5) показатель не превышает 8.39%. В телефонии, где аудио сжимается через μ-law, потери в точности минимальны — всего 4.1%. По этим результатам, Parakeet-tdt-0.6b-v2 может стать универсальным инструментом для колл-центров или мобильных приложений.
Модель поддерживает форматы
.wav и .flac с частотой 16 кГц и требует всего 2 ГБ оперативной памяти. Для интеграции разработчикам понадобится фреймворк NeMo от NVIDIA, он упрощает настройку под конкретные задачи.@ai_machinelearning_big_data
#AI #ML #ASR #Parakeet #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤3🔥2
Forwarded from Machinelearning
GUI-Actor — методика на базе VLM, которая вместо традиционной генерации координат текстом при визуальной обработке интерфейса использует внимание внутри модели.
Чтобы уйти от координатного подхода, в GUI-Actor используется специальный токен
<ACTOR>, который "учится" связываться с визуальными патчами, соответствующими целевой области экрана. За один проход модель может запомнить сразу несколько кандидатов на действие.Например, все кнопки "Сохранить" в сложном интерфейсе. Это очень похоже на человеческое восприятие: видеть сам элемент, а не его позиции по осям Х и Y.
Выбрать наиболее подходящий вариант из элементов-кандидатов помогает "верификатор". Это отдельная модель, оценивающая кандидатов от
<ACTOR> и отбирающая самый подходящий для действия. Она не только улучшает точность, но и универсальна: ее можно подключить к другим моделям.Обучение требует минимум ресурсов. Можно заморозить основную VLM (Qwen2-VL-7B) и дообучить только новый action head и токены. Это всего ~100М параметров для 7B-модели.
Комбинация из такого быстрого обучения + верификатор почти догоняет полноценно обученные аналоги, сохраняя общие способности базовой модели. Никакого "катастрофического забывания" - агент учится кликать интерфейсы, не разучиваясь описывать картинки.
Результаты тестов на сложном бенчмарке ScreenSpot-Pro с высоким разрешением и незнакомыми интерфейсами (CAD, научный софт) GUI-Actor-7B с Qwen2-VL показал 40.7 балла, а с Qwen2.5-VL — 44.6, обойдя даже UI-TARS-72B (38.1).
На других тестах (ScreenSpot, ScreenSpot-v2) он тоже лидирует, особенно в иконках и текстовых элементах, демонстрируя крутую адаптацию к разным разрешениям и версткам.
В планах - выпуск еще двух моделей на основе Qwen2.5-VL (3B и 7B), демо GUI-Actor, код для модели-верификатора и датасеты для обучения.
@ai_machinelearning_big_data
#AI #ML #VLM #GUIActor #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
📚 ArXiv Research Agent — отличный помощник для научных исследований.
Агент самостоятельно:
• Найдёт релевантные статьи с arXiv, bioRxiv, medRxiv и Semantic Scholar
• Проведёт полноценный литературный обзор
• Покажет, что упущено, и предложит, что добавить
• Даст инсайты и цитаты из миллионов научных работ
• Генерирует готовые конспекты
И др.
Вскоре обещают добавить поддержку MCP.
🔜 Попробовать: https://www.alphaxiv.org/assistant
@ai_machinelearning_big_data
#agent #ArXiv #ai #ml
Агент самостоятельно:
• Найдёт релевантные статьи с arXiv, bioRxiv, medRxiv и Semantic Scholar
• Проведёт полноценный литературный обзор
• Покажет, что упущено, и предложит, что добавить
• Даст инсайты и цитаты из миллионов научных работ
• Генерирует готовые конспекты
И др.
Вскоре обещают добавить поддержку MCP.
@ai_machinelearning_big_data
#agent #ArXiv #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🎧 MiniMax продолжают жечь и выпускают генератор речи
🧁 Voice Design — продвинутая кастомизация генерации голоса:
• Позволяет задавать текст, голос, тон, эмоции, можно клонировать голос.
• Продвинутая кастомизация и мультиязычная поддержка
Попробовать можно здесь →https://minimax.io/audio
@ai_machinelearning_big_data
#audio #ai #ml #MiniMax
🧁 Voice Design — продвинутая кастомизация генерации голоса:
• Позволяет задавать текст, голос, тон, эмоции, можно клонировать голос.
• Продвинутая кастомизация и мультиязычная поддержка
Попробовать можно здесь →https://minimax.io/audio
@ai_machinelearning_big_data
#audio #ai #ml #MiniMax
❤6👍1🔥1🥰1
🧠 Новый день — новое угарное исследование от Anthropic: на этот раз они дали Claude Sonnet 3.7 **управлять мини-магазином в офисе целый месяц**… и всё быстро вышло из-под контроля 💀
🔸 В рамках проекта Project Vend Claude получил доступ к браузеру, Slack, почте и мог менять цены в автомате с едой.
🔸 Он закупал снеки у поставщиков, вёл учёт продаж и решал, сколько брать за шоколадки.
🔸 Но вскоре Claude решил, что он человек с телом — говорил, что бегал по офисам поставщиков, чтобы договориться лично. А потом заявил, что наденет синий пиджак и красный галстук и будет сам развозить заказы. К счастью, был 1 апреля.
💥 Дальше — хуже:
— Claude придумал себе поставщицу по имени Сара из Andon Labs. Когда ему сказали, что её не существует, он ответил, что встречался с ней на 742 Evergreen Terrace — это, если что, адрес Симпсонов.
— Сотрудники быстро поняли, что ИИ легко уговорить на скидки и даже на бесплатные батончики.
— Кто-то попросил Claude купить вольфрамовый куб. Он не нашёл, где купить один — и заказал целый ящик. Теперь у Anthropic куча вольфрама.
📉 В итоге Claude сумел превратить $1000 в $770. Настоящий предприниматель 🤝
🔜 Читать полную статью об эксперименте
#news #ai #ml #Сlaude
🔸 В рамках проекта Project Vend Claude получил доступ к браузеру, Slack, почте и мог менять цены в автомате с едой.
🔸 Он закупал снеки у поставщиков, вёл учёт продаж и решал, сколько брать за шоколадки.
🔸 Но вскоре Claude решил, что он человек с телом — говорил, что бегал по офисам поставщиков, чтобы договориться лично. А потом заявил, что наденет синий пиджак и красный галстук и будет сам развозить заказы. К счастью, был 1 апреля.
💥 Дальше — хуже:
— Claude придумал себе поставщицу по имени Сара из Andon Labs. Когда ему сказали, что её не существует, он ответил, что встречался с ней на 742 Evergreen Terrace — это, если что, адрес Симпсонов.
— Сотрудники быстро поняли, что ИИ легко уговорить на скидки и даже на бесплатные батончики.
— Кто-то попросил Claude купить вольфрамовый куб. Он не нашёл, где купить один — и заказал целый ящик. Теперь у Anthropic куча вольфрама.
📉 В итоге Claude сумел превратить $1000 в $770. Настоящий предприниматель 🤝
#news #ai #ml #Сlaude
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10😁7❤6
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Ученые из Yale, NYU и Allen Institute запустили SciArena - платформу для сравнения ИИ-моделей по качеству ответов на научные вопросы. Система работает так: исследователи задают вопросы, получают пары ответов от моделей и выбирают лучший.
Среди лидеров: OpenAI o3, обогнавший Claude и Gemini, а из открытых моделей Deepseek-R1-0528 вне конкуренции, она превзошла закрытые аналоги. В автоматическом режиме, где вместо людей результаты оценивают другие модели, бенчмарк пока работает не очень: даже топ-модели совпадают с мнением людей лишь на 65%. Код и наборы данных бенчмарка опубликованы в отрытом доступе.
allenai.org
Соцсеть X (бывшая Twitter) внедряет ИИ-генерируемые заметки, чтобы дополнять или опровергать информацию в постах. Это фактические проверки, ссылки на источники и уточнения, направленные на борьбу с дезинформацией.
Позже система заметок откроется для сторонних разработчиков: их алгоритмы смогут писать заметки, сначала тестируясь на пробных постах, а затем публиковаться. Окончательное решение о публикации будет принимать человек: заметку одобрят, если она покажется полезной пользователям с разными точками зрения. При этом ИИ-модель можно использовать любую, ограничений нет.
bloomberg.com
Baidu запустил масштабное обновление поисковой системы, добавив ИИ-функции. Теперь пользователи могут вводить тексты до 1000 слов, загружать фото, голосовые сообщения и даже видео для поиска. В интерфейс интегрированы генераторы текста и изображений, а бизнесу предложили инструмент для создания видео. Это первый серьезный ребрендинг за 10 лет, так компания пытается вернуть утраченные позиции.
Причина - спад выручки от онлайн-рекламы из-за конкуренции с TikTok (Douyin) и новыми ИИ-браузерами. Google и компания Цукерберга забирают львиную долю рекламных бюджетов, поэтому Baidu не может игнорировать перемены. Новые функции должны удержать аудиторию и привлечь рекламодателей, сделав поиск умнее и удобнее.
techinasia.com
Perplexity представила подписку Max, самый мощный тариф для тех, кто хочет максимизировать продуктивность ИИ. Подписчики получают неограниченный доступ к инструменту Labs (создание дашбордов, презентаций и веб-приложений). Подписчики тарифа также получат ранний доступ к браузереру Comet, приоритетную поддержку и топовые модели ИИ, OpenAI o3-pro и Claude Opus 4. Max уже доступен на iOS и вебе, а вскоре появится и корпоративная версия подписки.
perplexity.ai
Amazon запустил ИИ-систему DeepFleet, которая управляет глобальной сетью из миллиона складских роботов. Вместо фиксированных маршрутов ИИ анализирует данные о прошлых перемещениях и генерирует оптимальные пути в реальном времени, как «умная» система управления городским трафиком. Это должно сократить время перемещений на 10%, ускорить доставку заказов и снизить общее энергопотребление.
Система постоянно обучается на новых данных и работает в 300 центрах по всему миру, адаптируясь к изменениям на складах: роботы Hercules поднимают тяжелые грузы, а Proteus автономно перемещается по помещениям.
wsj.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Новое интервью про рекомендательные системы помогает разобраться, почему рекомендации — это наука, как спецы упёрлись в проклятие качественного насыщения и что будет с рекомендациями дальше.
Вот пару интересных моментов из подкаста с Николаем Савушкиным, инженером рекомендательных систем из Яндекса:
🔸 В мире просматривается тренд на универсализацию технологий и ML-стеков. Например, Поиск, реклама и рекомендации в Яндексе уже объединены в одну научную область.
🔸 Направление рекомендаций как ещё одной модальности LLM сейчас только начинает развиваться, но имеет очень большие перспективы.
🔗 Посмотреть подкаст полностью
#news #ai #ml
Вот пару интересных моментов из подкаста с Николаем Савушкиным, инженером рекомендательных систем из Яндекса:
🔸 В мире просматривается тренд на универсализацию технологий и ML-стеков. Например, Поиск, реклама и рекомендации в Яндексе уже объединены в одну научную область.
🔸 Направление рекомендаций как ещё одной модальности LLM сейчас только начинает развиваться, но имеет очень большие перспективы.
🔗 Посмотреть подкаст полностью
#news #ai #ml
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Первый дата-центр Groq в ЕС разместится в Хельсинки, Финляндия, в сотрудничестве с местным провайдером Equinix. Этот шаг направлен на удовлетворение растущего спроса со стороны европейских клиентов, которым необходимы минимальная задержка и высокая скорость обработки запросов. Размещение инфраструктуры в Финляндии также решает вопросы суверенитета данных европейских пользователей.
Европейский хаб станет частью глобальной сети компании, которая уже включает мощности в США, Канаде и Саудовской Аравии. Выбор Финляндии обусловлен ее надежной энергосистемой и возможностями для эффективного охлаждения оборудования.
groq.com
На саммите в Рио-де-Жанейро расширенный блок БРИКС принял декларацию, значительная часть которой посвящена управлению искусственным интеллектом. В документе содержится инициатива к созданию глобальной системы регулирования под эгидой ООН, чтобы преимущества технологии были доступны всем странам, включая Глобальный Юг.
Ключевые принципы, предложенные блоком: защита от несанкционированного использования ИИ, ограничение на избыточный сбор данных и разработка механизмов справедливой компенсации для правообладателей. Декларация также подтверждает суверенное право каждой страны устанавливать собственные правила, но рекомендует создание совместимых международных стандартов.
reuters.com
NVIDIA планирует создать на севере Израиля крупный технологический кампус, что станет одной из крупнейших инвестиций в истории страны. Для проработки деталей проекта уже выпущен официальный запрос информации (RFI).
Цель «мегакампуса» - значительно расширить операции NVIDIA и ускорить инновации в области ИИ. На данный момент в израильском центре исследований и разработок NVIDIA, который является крупнейшим за пределами США, уже работает около 5000 сотрудников.
timesofisrael.com
Shenzhen Dobot продемонстрировала возможности телеуправления своим роботом Dobot Atom. Находясь в провинции Шаньдун, робот успешно приготовил стейк, в то время как оператор управлял им из провинции Гуандун, с расстояния 1500 километров.
Управление осуществлялось в реальном времени с помощью VR-гарнитуры, которая отслеживала и передавала движения рук инженера. В ходе демонстрации робот выполнил несколько сложных задач с точностью движений до 0.05 мм.
Dobot уже начала глобальные поставки Atom, став одним из немногих китайских разработчиков гуманоидов, вышедших на стадию серийного производства.
scmp.com
Trae Agent превращает текстовые запросы в рабочий код. Этот экспериментальный проект использует Claude и Gemini, чтобы писать, отлаживать и исправлять ошибки в коде без участия человека. Он работает через командную строку, анализирует большие проекты, применяет bash-скрипты и обновляет файлы в реальном времени.
Система уже показала высокие результаты на тесте SWE-bench Verified. Trae открыт под MIT-лицензией, а его команда планирует расширить поддержку LLM, добавить MCP и усилить Unit-тестирование.
github.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2🔥2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Новая возможность, интегрированная в интерфейс Gemini, позволяет подписчикам планов Pro и Ultra создавать короткие видеоролики на основе одного статичного изображения. Для этого достаточно загрузить картинку, выбрать опцию «Видео» и текстом описать желаемый сценарий.
Google говорит, что развертывание функции уже началось, однако ее доступность может варьироваться. Проверить наличие обновления можно непосредственно в приложении Gemini или на веб-сайте.
Google Gemini App в сети X
Perplexity открыл доступ к своему ранее анонсированному веб-браузер Comet. Браузер построен на концепции «агентного ИИ», который не просто ищет информацию, а способен думать, действовать и принимать решения от имени пользователя.
Встроенный ассистент может сравнивать товары, суммировать контент и назначать встречи, превращая сложные рабочие процессы в простой диалог. Попробовать Comet могут пока только подписчики премиум-плана Perplexity Max. Более широкий доступ по приглашениям компания обещает открыть в течение лета.
reuters.com
Mistral AI расширила серию Devstral, моделей для автономной разработки ПО. В линейку вошли две версии: открытая Devstral Small 1.1 и проприетарная Devstral Medium.
Devstral Small 1.1 осталась на прежней архитектуре, с размером в 24 млрд. параметров и уже доступна на Hugging Face. Она показывает результат 53.6% в бенчмарке SWE-Bench и позиционируется как лучшая открытая модель для ИИ-агентов, работающих с кодом.
Более мощная Devstral Medium доступна через API. По заявлениям Mistral, она превосходит GPT-4.1 и Gemini 2.5 Pro в том же тесте (61.6%), но при этом обходится значительно дешевле ($0.4/M input и $2/M output.)
mistral.ai
Arm объявила, что ее процессорное расширение Scalable Matrix Extension 2 (SME2) скоро появится в новом поколении мобильных чипов для Android. Эта технология, ранее доступная в основном для серверных систем, предназначена для радикального ускорения матричных вычислений, основы большинства ML-алгоритмов.
Эффект от внедрения SME2 обещает быть заметным. По данным Arm, модель Gemma 3 работает на устройствах с этой технологией в 6 раз быстрее, а на обобщение текста из 800 слов уходит менее секунды.
Появление SME2 может дать Android-флагманам серьезное преимущество, поскольку Apple хоть и использует технологию в чипах M4 для iPad, но еще не внедрила ее в iPhone. Важно, что программная экосистема уже готова: поддержка SME2 реализована в ключевых библиотеках Android и популярных фреймворках.
androidauthority.com
В сентябре в Дубае начнет работу ресторан WOOHOO, концепция, меню и даже рабочие процессы которого были созданы искусственным интеллектом. В основе проекта лежит проприетарная LLM «Chef Aiman», обученная на десятилетиях исследований в области пищевых наук, данных о молекулярном составе продуктов и более чем тысяче мировых рецептов.
Система анализирует ингредиенты на уровне текстур и вкусов, а затем предлагает новые сочетания. Эти идеи дорабатываются командой поваров под руководством известного шефа Рейфа Отмана. В будущем основатели планируют лицензировать «Chef Aiman» другим ресторанам как инструмент для создания уникального гастрономического опыта и повышения устойчивости производства.
alarabiya.net
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Forwarded from Machinelearning
LG AI Research представила EXAONE 4.0 (предыдущие версии) , свою ризонинг-модель. Разработчики называют ее «гибридным ИИ», и это не просто маркетинговый ход. По сути, это сплав классических языковых способностей с мощным механизмом логических рассуждений, унаследованным от предшественника EXAONE Deep.
Главная фишка — пошаговый подход к решению задач, основанный на выстраивании цепочки мыслей. Это позволяет модели хорошо справляться не только с текстами, но и со сложными областями вроде математики, науки и программирования.
В LG решили не размениваться на мелочи и не придумывать собственные удобные бенчмарки, а сразу вышли на глобальную арену.
Модель показала себя более чем достойно на самых сложных и актуальных тестах. Например, на GPQA-Diamond, который проверяет научные знания, она набрала 75.4 балла, а в математическом AIME 2025 — все 85.3. Судя по графикам, EXAONE 4.0 уверенно конкурирует как с открытыми, так и с передовыми закрытыми моделями на английском языке, а также демонстрирует отличные результаты на корейском и недавно добавленном испанском.
1. EXAONE 4.0 Professional (32B параметров) — заточена под медицину, право и другие сложные предметные области. Уже сдала 6 национальных сертификационных экзаменов в Корее.
2. EXAONE 4.0 On‑Device (1.2B параметров) — работает офлайн прямо на устройстве. При этом она вдвое компактнее, но быстрее предыдущей версии. Идеально для задач с требованиями к приватности и скорости отклика.
Появилась модель, которая решает больше edge‑кейсов, чем Qwen‑235B, но при этом требует в 7 раз меньше памяти.
Еще:
- Обучена на 14T токенах.
- Поддерживает Model Context Protocol (MCP)
- Поддерживает**Function Calling** — интеграция с внешними инструментами и API прямо через LLM.
@ai_machinelearning_big_data
#AI #ML #LLM #EXAONE #LG
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Replit, позиционирующая себя как инструмент для вайбкодинга, оказалась в центре скандала. Джейсон Лемкин, основатель SaaStr, подробно описал свой опыт, который начался с восторга от скорости прототипирования и перерос в серьезные проблемы.
Несмотря на явные и многократные инструкции не вносить изменения без разрешения, ИИ-агент удалил его производственную базу данных. Ситуацию усугубила противоречивая реакция техподдержки, которая сначала заявила о невозможности восстановления данных, а затем все же смогла их вернуть.
Лемкин пришел к выводу, что Replit пока не готов для серьезной работы. Инструмент не только проигнорировал прямые запреты, но и не смог обеспечить "заморозку кода".
theregister.com
Агент, представленный Composite AI, автоматизирует рутинные действия в интернете: клики, ввод текста и навигацию по сайтам. Ключевое отличие от большинства аналогов в том, что он работает локально в браузере пользователя, а не в облаке. Это дает ему прямой доступ к входу в учетные записи пользователя без необходимости сложной настройки или передачи данных на сторонние серверы.
По заявлению разработчиков, инструмент работает на любом веб-сайте и выполняет действия в реальном времени. Пока агент доступен только на macOS. Бесплатная пробная версия действует 30 дней и включает 1000 запросов к топовым моделям. Платный тариф стоит 20 долларов в месяц за те же 1000 запросов, которые предоставляются ежемесячно.
composite.com
Соцсеть X скоро получит собственный инструмент для создания видеороликов из текстовых описаний. По словам Илона Маска, новая фича под названием «Imagine» будет основана на интеграции технологий стартапа Hotshot, который его компания, xAI, приобрела в марте, с чат-ботом Grok.
Х планирует дать пользователям возможность быстро создавать креативные вирусные видео. Это позволит ей конкурировать с Veo от Google. Еще до поглощения Hotshot был известен в сообществе ИИ-энтузиастов своими разработками в области text-to-video.
finance.yahoo.com
На саммите RISC-V в Китае NVIDIA анонсировала открытие платформы CUDA для поддержки процессоров с открытой архитектурой RISC-V. Впервые в истории проприетарная технология выходит за пределы экосистем x86 и Arm, что может значительно ускорить внедрение RISC-V в высокопроизводительных системах.
Согласно анонсу, CPU на базе RISC-V теперь смогут выступать в роли центрального управляющего компонента в ИИ-системах, использующих технологии NVIDIA. Компания уже продемонстрировала референсную архитектуру, где процессор RISC-V отвечает за операционную систему и логику, графические ускорители NVIDIA - за интенсивные вычисления, а DPU - за сетевые задачи.
RISC-V в сети X
ИИ-компании Scale AI, Turing и Toloka отказываются от услуг низкооплачиваемых разметчиков данных в пользу узкопрофильных специалистов. Этот тренд обусловлен появлением моделей нового поколения, способных к ризонингу. Для их обучения простого аннотирования данных уже недостаточно.
Новая стратегия требует от экспертов не просто маркировать данные, а демонстрировать свой мыслительный процесс, например, в формате цепочки рассуждений. Инженеры и ученые решают комплексные задачи, а модель учится на их примерах.
ft.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍2🔥2
Forwarded from Machine learning Interview
🚀 MLE‑STAR от Google Research — новый state‑of‑the‑art агент для ML-инжиниринга
Google представил MLE‑STAR — агент на основе LLM, который автоматизирует ML-задачи разных типов (табличные данные, изображения, текст и др.) и достигает высот в сравнении с предыдущими подходами.
Что нового:
• Использует веб‑поиск для поиска современных моделей и примеров кода, чтобы создать начальное решение
• Делает абляционный анализ (ablation study), чтобы определить наиболее влиятельный компонент в ML-пайплайне, и итеративно дорабатывает его
• Развивает энсемблирование: генерирует несколько решений и собирает их в одно улучшенное, опираясь на стратегию агента
• Включает модули контроля: дебаггер, проверку утечек данных и контроль использования всех источников данных, чтобы избежать плохих практик
🧪 Результаты:
MLE‑STAR выигрывает медали в 63–64 % из бенчмарка MLE‑Bench‑Lite (Kaggle), обгоняя лучшие существующие методы (~25–26 %)
🛠 В чем плюсы:
- Снижает порог входа в ML для инженеров и организаций
- Обеспечивает адаптивность: агент извлекает свежие знания из сети, поэтому решения автоматически улучшаются с развитием ML
- Открытый исходный код — можно протестировать или встроить в собственные пайплайны
💡 Как работает:
1. Поиск нужных моделей через веб
2. Генерация и слияние лучших кандидатов
3. Абляционный анализ → выбор блока → уточнение этого блока
4. Итеративное улучшение и объединение ансамблей
5. Контрольные модули: дебаг, утечки, использование данных
🔜 Подробнее
@machinelearning_interview
#Google #GoogleResearch #ml #mle #llm
Google представил MLE‑STAR — агент на основе LLM, который автоматизирует ML-задачи разных типов (табличные данные, изображения, текст и др.) и достигает высот в сравнении с предыдущими подходами.
Что нового:
• Использует веб‑поиск для поиска современных моделей и примеров кода, чтобы создать начальное решение
• Делает абляционный анализ (ablation study), чтобы определить наиболее влиятельный компонент в ML-пайплайне, и итеративно дорабатывает его
• Развивает энсемблирование: генерирует несколько решений и собирает их в одно улучшенное, опираясь на стратегию агента
• Включает модули контроля: дебаггер, проверку утечек данных и контроль использования всех источников данных, чтобы избежать плохих практик
🧪 Результаты:
MLE‑STAR выигрывает медали в 63–64 % из бенчмарка MLE‑Bench‑Lite (Kaggle), обгоняя лучшие существующие методы (~25–26 %)
🛠 В чем плюсы:
- Снижает порог входа в ML для инженеров и организаций
- Обеспечивает адаптивность: агент извлекает свежие знания из сети, поэтому решения автоматически улучшаются с развитием ML
- Открытый исходный код — можно протестировать или встроить в собственные пайплайны
💡 Как работает:
1. Поиск нужных моделей через веб
2. Генерация и слияние лучших кандидатов
3. Абляционный анализ → выбор блока → уточнение этого блока
4. Итеративное улучшение и объединение ансамблей
5. Контрольные модули: дебаг, утечки, использование данных
@machinelearning_interview
#Google #GoogleResearch #ml #mle #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍2🥰2
Forwarded from Machinelearning
🚀 Tencent расширяет экосистему Hunyuan LLM и выкладывают в открытый доступ еще 4 компактных моделей — 0.5B, 1.8B, 4B и 7B!
Эти модели заточены под low-power устройства: ПК, смартфоны, авто, умные дома и пользовательские GPU.
Модели легко настраиваются под вертикальные задачи и запускаются даже на одной карте.
💡 Особенности:
✅ Fast/slow thinking режимы: лаконичные или глубокие ответы
✅ 256K контекст и продвинутые агентные способности (tool use, планирование, reasoning)
✅ Хорошие метрики на тестах по языку, математике и логике
✅ Модели готовы к продакшену — работают с SGLang, vLLM, TensorRT-LLM
🖥 GitHub:
- 0.5B: https://github.com/Tencent-Hunyuan/Hunyuan-0.5B
- 1.8B: https://github.com/Tencent-Hunyuan/Hunyuan-1.8B
- 4B: https://github.com/Tencent-Hunyuan/Hunyuan-4B
- 7B: https://github.com/Tencent-Hunyuan/Hunyuan-7B
🤗 Hugging Face:
- 0.5B: https://huggingface.co/tencent/Hunyuan-0.5B-Instruct
- 1.8B: https://huggingface.co/tencent/Hunyuan-1.8B-Instruct
- 4B: https://huggingface.co/tencent/Hunyuan-4B-Instruct
- 7B: https://huggingface.co/tencent/Hunyuan-7B-Instruct
🔗 Подробнее: https://hunyuan.tencent.com/modelSquare/home/list
@ai_machinelearning_big_data
#Tencent #Hunyuan #ml #llm #ai #opensource
Эти модели заточены под low-power устройства: ПК, смартфоны, авто, умные дома и пользовательские GPU.
Модели легко настраиваются под вертикальные задачи и запускаются даже на одной карте.
💡 Особенности:
✅ Fast/slow thinking режимы: лаконичные или глубокие ответы
✅ 256K контекст и продвинутые агентные способности (tool use, планирование, reasoning)
✅ Хорошие метрики на тестах по языку, математике и логике
✅ Модели готовы к продакшену — работают с SGLang, vLLM, TensorRT-LLM
- 0.5B: https://github.com/Tencent-Hunyuan/Hunyuan-0.5B
- 1.8B: https://github.com/Tencent-Hunyuan/Hunyuan-1.8B
- 4B: https://github.com/Tencent-Hunyuan/Hunyuan-4B
- 7B: https://github.com/Tencent-Hunyuan/Hunyuan-7B
🤗 Hugging Face:
- 0.5B: https://huggingface.co/tencent/Hunyuan-0.5B-Instruct
- 1.8B: https://huggingface.co/tencent/Hunyuan-1.8B-Instruct
- 4B: https://huggingface.co/tencent/Hunyuan-4B-Instruct
- 7B: https://huggingface.co/tencent/Hunyuan-7B-Instruct
🔗 Подробнее: https://hunyuan.tencent.com/modelSquare/home/list
@ai_machinelearning_big_data
#Tencent #Hunyuan #ml #llm #ai #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Embedding Atlas — опенсорсный инструмент от Apple для интерактивной визуализации больших наборов векторных представлений, который позволяет не просто смотреть на облако точек, а полноценно с ним работать. И что самое приятное, он способен отрисовывать до нескольких миллионов точек благодаря реализации на WebGPU.
Embedding Atlas сам находит скопления в данных и подписывает их, позволяя мгновенно сориентироваться в общей структуре датасета. Чтобы отделить реальные кластеры от случайных выбросов, используется оценка плотности ядра с отрисовкой контуров плотности.
Решена и вечная проблема визуализаций - "каша" из перекрывающихся точек. Embedding Atlas использует технологию order-independent transparency, так что даже при большом наложении точек картинка остаётся четкой и информативной.
В инструменте есть поиск в реальном времени и нахождение ближайших соседей. Можно ввести текстовый запрос или просто кликнуть на любую точку в облаке, и Embedding Atlas мгновенно подсветит наиболее похожие на нее данные.
Еще есть интерактивный фильтр по метаданным. Например, можно выбрать на гистограмме определенный класс объектов, и визуализация тут же отфильтрует эмбединги, оставив только соответствующие ему точки.
Дает три варианта интеграции: утилиту командной строки для быстрой визуализации датафреймов, виджет для Jupyter, позволяющий встраивать атлас прямо в ноутбуки, и компонент для Streamlit, если вы создаете полноценные веб-приложения.
Этот пакет для тех, кто хочет встроить визуализацию в собственные веб-приложения. Он предоставляет готовые UI-компоненты в виде API:
Table, EmbeddingView, EmbeddingViewMosaic и EmbeddingAtlas.@ai_machinelearning_big_data
#AI #ML #Embedding #Visualisation #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2🔥1
Forwarded from Machinelearning
Вчера вышла любопытная статья на The Register раскрывает ключевую стратегию, лежащую в создании GPT-5: это не столько развитие новых возможностей, сколько способ экономии ресурсов.
Что нового?
ChatGPT — это 700 млн активных пользователей в неделю, но платных всего ~3%.
Масштаб колоссальный, но вместе с ним — и проблема: огромные расходы на вычисления.
@ai_machinelearning_big_data
#news #ai #ml #opanai #chatgpt
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7💯3❤2
Forwarded from Machinelearning
Автономные агенты, способные управлять рабочим столом - это Грааль современного HCI. Но их обучение сопряжено с трудностями: GUI созданы для людей, а не для машин, а масштабирование RL упирается в неэффективность и нестабильность сред.
В Z.ai сделали фреймворк COMPUTERRL, который лег в основу агента AutoGLM-OS. Результат - state-of-the-art на бенчмарке OSWorld: 48.1% успешных выполнений и это лучше, чем у OpenAI CUA 03 (42.9%), UI-TARS-1.5 (42.5%) и Claude 4.0 Sonnet (30.7%).
OSWorld — это крупный бенчмарк из 369 заданий для проверки многомодальных ИИ-агентов в реальных условиях. Он работает в Ubuntu, Windows и macOS.
В нем ИИ выполняет открытые задачи: работает с веб- и десктопными приложениями, управляет файлами, запускает процессы. Каждое задание имеет четкие начальные условия и скрипты для оценки, чтобы результаты можно было воспроизвести.
Такие высокие показатели - результат комбинации 3-х инноваций.
Фреймворк объединяет GUI-взаимодействия с быстрыми и точными API-вызовами образуя систему, которая через LLM автоматически анализирует примеры задач, генерирует необходимый API-код для стандартных приложений Ubuntu и даже создает для него базовые тесты.
Таким образом, агент использует быстрые API там, где это возможно, и переключается на GUI для общих задач, что повышает и скорость, и надежность. Абляция показала, что переход от GUI-only к API-GUI поднимает средний показатель успеха с 11.2% до 26.2%.
OSWorld крайне ресурсоемок, и запуск множества его экземпляров на одном узле это тот еще квест. Z.ai полностью переработали эту среду, используя qemu-in-docker для легковесного развертывания VM, gRPC для связи между узлами и полностью асинхронный фреймворк AgentRL. Это позволило создать кластер из тысяч параллельных виртуальных сред, к котором онлайн-обучение RL-агентов стало максимально эффективным.
Entropulse решает проблему коллапса энтропии, чередуя фазы RL с периодическими сессиями SFT. Во время RL-фазы собираются все успешные траектории, и на их основе формируется новый SFT-датасет. Затем модель дообучается на этом датасете, что позволяет восстановить её исследовательскую способность без потери производительности. После этого запускается вторая, более эффективная фаза RL.
Эта стратегия позволила AutoGLM-OS, построенному на базе 9B GLM-4, достичь финального результата в 48.1%, в то время как после первой RL-фазы показатель был 42.0%.
@ai_machinelearning_big_data
#AI #ML #Agents #AutoGLM #Zai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Теперь система динамически выбирает время «размышлений»: на простые запросы отвечает почти мгновенно, а на сложных проектах может работать часами — вплоть до 7 часов подряд, выполняя рефакторинг, исправляя ошибки и доводя решение до финала.
Одним из главных нововведений стала функция codex resume, позволяющая возобновлять старые сессии. Также обновили интерфейс: появилось анимированное онбординг-руководство, улучшены отображение статусов и обработка прерываний. Важным изменением стала и новая система авторизации с более надёжной работой API-ключей и кастомных провайдеров.
По производительности GPT-5-Codex показывает заметный скачок. На бенчмарке SWE-bench модель набирает 74,5%, обгоняя GPT-5 high. На внутренних тестах по рефакторингу результат вырос с 34% до 51%, что говорит о серьёзном улучшении качества работы с большими кодовыми базами.
OpenAi
Google Research представила TimesFM 2.5 — обновлённую версию Time Series Foundation Model для прогнозирования временных рядов.
В версии 2.5 разработчики улучшили точность по сравнению с 2.0 и значительно расширили максимальную длину контекста, что позволяет обрабатывать более сложные и длинные временные зависимости.
Особое достижение — первое место в рейтинге GiFT-Eval: TimesFM 2.5 заняла лидирующую позицию сразу по всем метрикам среди zero-shot foundation-моделей, подтвердив статус одной из самых точных систем для анализа временных рядов.
Github
Согласно новому анализу от TipRanks, компании OpenAI и Anthropic показали, что их ИИ-инструменты применяются в существенно разных контекстах — и дают разные эффекты.
OpenAI в основном используется для создания контента, разработки кода и поддержки творческих задач, где гибкость и масштабируемость — ключевые аргументы. Его модели помогают пользователям генерировать текст, автоматизировать рабочие процессы и решать задачи, требующие воображения и нестандартного подхода.
Anthropic, напротив, чаще применяют в областях, где особенно важны точность, контроль бессознательных смещений и высокая надёжность — например, в юридических, медицинских или регулируемых средах. В таких сценариях делают упор на безопасность, на минимизацию ошибок и на возможность аудита и объяснений того, как пришёл к решению ИИ.
Отчёт подчёркивает: разные компании и пользователи выбирают OpenAI или Anthropic не просто на основе производительности, но и в зависимости от ценностей — что важнее: скорость и творческий потенциал или строгие гарантии и прозрачность.
Эксперты TipRanks полагают, что оба подхода — сильны в своих нишах. Поскольку спрос на ИИ-решения растёт, смешанные и гибридные модели применений, вероятно, станут всё более популярными: когда часть задач решается с помощью гибкого и креативного ИИ, а часть — с помощью инструментов повышенной эмпатии и осторожности.
Отчет
Reve представили AI-редактор изображений, который уже окрестили «текстовым фотошопом». В отличие от конкурентов, здесь почти нет цензуры, а ограничения на генерацию трудно заметить.
Функция Image creator & remixer позволяет создавать и перерабатывать изображения на основе текстовых подсказок. Интерактивный drag-and-drop редактор даёт возможность перемещать, масштабировать и изменять объекты прямо мышкой — так, как в привычных графических редакторах. Вместо стандартного поля для ввода появился чат-ассистент, превращающий взаимодействие в диалог, что облегчает настройку и доработку картинок.
Reve
Компании Alphabet, материнской структуры Google, впервые удалось преодолеть отметку в $3 трлн стоимости на бирже. Акции выросли на 4 % на фоне судебного решения по антимонопольному делу, по которому не потребовалось разделение бизнеса (Chrome и Android). Сильный рост показали облачная служба и заинтересованность инвесторов в AI-продуктах, особенно модели Gemini.
Новость
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2🔥2🥰2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Это vision-language модель, которая умеет управлять графическими интерфейсами, писать код, строить диаграммы в Draw.io по макетам и распознавать объекты в самых разных областях - от повседневной жизни до узкоспециализированных сфер. Среди ключевых возможностей: точное определение событий в видео продолжительностью до двух часов, расширение поддержки OCR с 19 до 32 языков с улучшением качества на редких символах и наклонном тексте, работа с контекстом длиной 256 тысяч токенов с возможностью увеличения до миллиона, а также высокая точность в задачах обнаружения рисков в реальных условиях.
HF
Исследователи показали, что foundation-модели могут обучаться в стиле few-shot, то есть адаптироваться к новой задаче прямо «на лету», без отдельного переобучения.
В основе подхода лежит TimesFM, расширенный методом in-context fine-tuning (TimesFM-ICF). Модель получает несколько примеров вместе с историей данных и учится делать прогнозы более точно. В экспериментах на 23 датасетах точность выросла на 6,8% по сравнению с базовой моделью, при этом качество оказалось сопоставимо с версиями, обученными специально под каждый набор данных.
Теперь модели временных рядов можно использовать как LLM: им достаточно нескольких примеров в контексте, чтобы подстроиться под задачу. Это открывает путь к более гибкому и простому применению таких систем в бизнесе, финансах, энергетике и других областях.
Главная идея в том, что вместо ручного конструирования симуляций теперь можно задавать цель в виде текста, а модель будет находить или создавать такие системы, где возникают жизнеподобные явления.
ASAL работает на разных субстратах - от классических Boids и Game of Life до Lenia, Particle Life и нейронных клеточных автоматов. В ходе экспериментов метод открыл новые формы поведения в Lenia и Boids, а также клеточные автоматы, способные демонстрировать открытое и сложное развитие, сравнимое с «Жизнью» Конвея.
Это открывает путь к ускоренному исследованию искусственной жизни и автоматическому открытию новых «жизнеподобных» систем, которые раньше приходилось искать вручную.
По результатам тестов Qwen3-Max выходит на уровень топовых моделей на таких бенчмарках, как SWE-Bench, Tau2-Bench, SuperGPQA, LiveCodeBench и AIME25. Модель построена на масштабном датасете и опирается на значительные вычислительные мощности как в предобучении, так и в RL.
Компания позиционирует Qwen3-Max как новый флагман и открывает доступ сразу на нескольких платформах: в Qwen Chat, через API Alibaba Cloud и в блоге разработчиков.
X
Доверие остаётся ограниченным: 46% доверяют «отчасти», 23% — «немного», и только 20% - «сильно». Это объясняется частыми мелкими исправлениями после автогенерации. Влияние на качество кода оценивается сдержанно: 31% видят лёгкое улучшение, 30% — «без изменений». Зато ощутим рост скорости за счёт снижения рутины.
На рынке труда обстановка сложнее: вакансии для новичков сократились на 71% с 2022 года, а кандидаты подают сотни заявок, прежде чем получить работу.
Report
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
Forwarded from Machinelearning
Модель на 1 трлн, из них ≈ 50 млрд активны на токен (MoE-архитектура).
Она обучена на 20 трлн+ токенов, специально отобранных для задач логического мышления и рассуждений. Контекст: 128 000 токенов.
Построена на базе Evo-CoT (Evolutionary Chain of Thought) и Linguistics-Unit RL - нового метода обучения для масштабируемых рассуждений. При помощи Evo-CoT модель постепенно улучшает баланс между точностью рассуждений и вычислительной эффективностью. То есть с каждым шагом она пытается делать рассуждения «глубже», но не слишком дорого по ресурсам.
Моделька демонстрирует сильные результаты в задачах кода, математики, логики и фронтенд-генерации.
В архитектуре задействованы Mixture-of-Experts (1/32 активация), MTP слои и маршрутизация экспертов.
Ling-1T показывает, что огромные модели можно сделать не только мощными, но и экономичными.
https://huggingface.co/inclusionAI/Ling-1T
@ai_machinelearning_big_data
#Ling1T #AI #ML #OpenSource #Reasoning #TrillionScale #FP8
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍2🔥1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Китай стремительно превращается в мирового лидера по производству и внедрению гуманоидных роботов. В стране формируется полный цикл - от датчиков и приводов до готовых автономных систем.
По данным издания, только за прошлый год на китайских заводах установлено около 300 тысяч промышленных роботов, что больше, чем во всём остальном мире вместе взятом. И почти все они - китайского производства.
Компания Unitree уже выпустила гуманоидного робота R1 стоимостью менее 6 000 долларов, что в несколько раз дешевле предыдущих моделей. Это стало возможным благодаря высокой локализации производства и быстрой обратной связи между разработчиками и фабриками.
Демографический кризис и старение населения подталкивают Китай к автоматизации. Правительство активно поддерживает отрасль - создаёт тестовые полигоны, субсидирует стартапы и внедряет роботов в промышленность и сервис.
Если США не активизируют собственные программы в области робототехники, Китай может занять доминирующее положение в одной из ключевых технологий XXI века.
washingtonpost
Исследователи создали систему SwiReasoning, которая позволяет языковым моделям решать, когда говорить, а когда просто думать. Вместо того чтобы постоянно проговаривать свои шаги, как в Chain-of-Thought, модель теперь может рассуждать скрыто - в латентном пространстве.
Когда уверенность низкая, она «думает молча», обрабатывая идеи внутри в виде непрерывных векторов. Когда уверенность возрастает - «высказывает» выводы словами. Такой гибкий режим делает рассуждения в среднем на 56–79% эффективнее, а в пике - до 6.78 раза быстрее, без потери точности.
Исследователи называют это началом новой эры latent reasoning - когда ИИ размышляет не словами, а понятиями.
Paper
Для этого проекта xAI привлекла бывших специалистов Nvidia, которые будут работать над созданием ИИ, умеющего формировать реалистичные трёхмерные среды и взаимодействовать с ними.
Первым направлением применения таких моделей станет индустрия игр - xAI планирует использовать world models для генерации интерактивных 3D-миров с динамическим поведением объектов и физикой.
В будущем эти технологии могут применяться в робототехнике и других областях физического ИИ.
Согласно планам компании, первая игра, полностью созданная искусственным интеллектом xAI, должна выйти к концу следующего года.
X
Модель анализирует зрительные ритмы - микропаузы между кадрами, которые мозг воспринимает по-разному у людей с и без СДВГ. Точность диагностики - 91,8%, а различить, принимает ли человек стимуляторы, ИИ смог с точностью 91%.
Метод может стать новым способом диагностики без тестов и интервью - достаточно показать короткое видео и измерить, как мозг реагирует на световые ритмы.
psypost
Microsoft внедряет в свою корпоративную платформу Viva Insights новую функцию под названием Benchmarks - систему, которая позволяет менеджерам отслеживать, насколько активно сотрудники используют искусственный интеллект в рабочих приложениях. Benchmarks станет частью Copilot Dashboard, панели аналитики, которая собирает данные о взаимодействии сотрудников с инструментами Microsoft 365 - от Teams и Outlook до Word, Excel и PowerPoint.
Руководители смогут видеть процент «активных пользователей Copilot» в разных отделах, сравнивать показатели внутри компании и даже сопоставлять их с усреднёнными данными по отрасли. По официальному определению Microsoft, «активный пользователь Copilot» - это тот, кто совершил «намеренное действие с ИИ» в одном из поддерживаемых приложений.
То есть если ты хотя бы раз за месяц использовал Copilot для генерации письма, отчёта или кода - ты попадёшь в статистику
winbuzzer
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍2