Big Data AI
16.8K subscribers
919 photos
118 videos
19 files
920 links
@haarrp - админ

Вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейроннным сетям

@data_analysis_ml - анализ данных

@ai_machinelearning_big_data

@itchannels_telegram - важное для программиста

РКН: clck.ru/3Fmqxe
Download Telegram
🧠 SmallThinker — новая серия LLM, нативно обученная для локального запуска

SmallThinker — это семейство языковых моделей, созданное с нуля для запуска на обычных устройствах:
📉 низкая память, 🐌 медленное хранилище, без GPU — и всё это без потери качества.

🔧 Технологии под капотом:
• Двухуровневая разреженность: MoE + sparse ReGLU (>60% нейронов неактивны)
• Pre-attention router: предсказание нужных экспертов заранее → читаем с SSD параллельно
• NoPE-RoPE гибрид: 1:3 глобальное:локальное внимание → KV-кэш в 4 раза меньше
• Кэширование и оффлоадинг экспертов → экономим CPU и дисковый ввод
• Sparse LM head: предсказываем подмножество словаря, не нужен полный софтмакс
• Чекпойнт-мёрджинг: баланс между универсальностью и инструкционной точностью

⚙️ Производительность (CPU-only, Q4_0):
🪶 4B-A0.6B (1 ГБ ОЗУ): 82.3% HumanEval, 66.1% MMLU, 108 ток/с
🚀 21B-A3B (8 ГБ ОЗУ): 89.6% HumanEval, 84.4% MMLU — на уровне Qwen3‑30B, но с 85× меньшим потреблением памяти

🏃‍♂️ Работает на CPU, ARM, Raspberry Pi — 20–108 токенов/сек.
📦 Полностью open-source. Готово к локальному использованию без компромиссов.

#LLM #SmallThinker #AI #LocalLLM #OpenSource

HF: https://huggingface.co/PowerInfer
PAPER: https://arxiv.org/abs/2507.20984
4👍3
Forwarded from Machinelearning
🚀 Tencent расширяет экосистему Hunyuan LLM и выкладывают в открытый доступ еще 4 компактных моделей — 0.5B, 1.8B, 4B и 7B!

Эти модели заточены под low-power устройства: ПК, смартфоны, авто, умные дома и пользовательские GPU.

Модели легко настраиваются под вертикальные задачи и запускаются даже на одной карте.

💡 Особенности:
Fast/slow thinking режимы: лаконичные или глубокие ответы
256K контекст и продвинутые агентные способности (tool use, планирование, reasoning)
Хорошие метрики на тестах по языку, математике и логике
Модели готовы к продакшену — работают с SGLang, vLLM, TensorRT-LLM

🖥 GitHub:
- 0.5B: https://github.com/Tencent-Hunyuan/Hunyuan-0.5B
- 1.8B: https://github.com/Tencent-Hunyuan/Hunyuan-1.8B
- 4B: https://github.com/Tencent-Hunyuan/Hunyuan-4B
- 7B: https://github.com/Tencent-Hunyuan/Hunyuan-7B

🤗 Hugging Face:
- 0.5B: https://huggingface.co/tencent/Hunyuan-0.5B-Instruct
- 1.8B: https://huggingface.co/tencent/Hunyuan-1.8B-Instruct
- 4B: https://huggingface.co/tencent/Hunyuan-4B-Instruct
- 7B: https://huggingface.co/tencent/Hunyuan-7B-Instruct

🔗 Подробнее: https://hunyuan.tencent.com/modelSquare/home/list

@ai_machinelearning_big_data


#Tencent #Hunyuan #ml #llm #ai #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🤖 XLeRobot — домашний робот за $660, который управляется с геймпада Xbox.

XLeRobot — это открытый проект, который позволяет собрать настоящего двухрукого мобильного робота своими руками.

Автор — студент Rice University Gaotian Wang, в проектеон сделал упор на доступность и практичность.

💡 Основное:
- Цена сборки ≈ $660 — полноценный робот с двумя руками и колесной базой.
- Можно собрать упрощённую версия за $250 на базе LeKiwi + SO-100, которая собирается быстрее.
- В комплекте: URDF-модели, симуляция, управление через VR, Joy-Con или Xbox-геймпад.
- Подходит для экспериментов в симуляции и переноса в реальный мир (**Sim2Real**).
взаимодействия с окружающей средой.

📈 Популярность: проект уже собрал 1.7k+ звёзд и десятки форков на GitHub.

XLeRobot — это недорогая и открытая платформа для тех, кто хочет попробовать себя в робототехнике, исследовать управление, симуляцию и AI-алгоритмы на реальном роботе.

🟢Репозиторий: github.com/Vector-Wangel/XLeRobot

@ai_machinelearning_big_data


#robotics #opensource #AI
Please open Telegram to view this post
VIEW IN TELEGRAM
5🤣2
Forwarded from Golang
👣 Google объявил релиз **Genkit Go 1.0** — стабильную, готовую к продакшену версию open-source фреймворка для разработки AI-приложений на Go.
Также представлена новая команда genkit init:ai-tools для лёгкой интеграции с AI-ассистентами в процессе разработки.

🔑 Что нового в Genkit Go 1.0

1. Production-ready
API признан стабильным: все программы, написанные на Genkit 1.*, будут работать и собираться в будущих минорных версиях.

2. Type-safe AI-flows
- Определение “flows” через Go-структуры и JSON Schema.
- Повышенная типобезопасность, тестируемость, наблюдаемость и удобство при деплое.

3. Унифицированный интерфейс моделей
Поддержка разных провайдеров (Google AI, Vertex AI, OpenAI, Ollama и др.) через единый API — легко переключаться между ними.

4. Tool calling, RAG и мультимодальность
- Вызов внешних инструментов (tool calling).
- Retrieval-augmented generation (RAG).
- Поддержка мультимодальных сценариев (текст, изображения и др.).

5. Инструменты для разработчиков
- Независимая CLI-утилита для локальной разработки.
- Developer UI: тестирование промтов, отладка flows, отслеживание производительности и трассировка.

6. Команда `genkit init:ai-tools`
Автоматическая интеграция с AI-ассистентами разработки: Gemini CLI, Firebase Studio, Claude Code, Cursor и др.

7. Примеры кода
В официальной документации показано, как определять flows, запускать HTTP endpoints, работать с моделями и инструментами.

🚀 Почему это важно
- Быстрая и безопасная разработка AI-приложений на Go.
- Унифицированный API позволяет экспериментировать и менять провайдеров без переписывания логики.
- Встроенные dev-инструменты ускоряют отладку и интеграцию.
- Подходит как для прототипов, так и для production-решений.

📌 Официальный анонс: https://developers.googleblog.com/en/announcing-genkit-go-10-and-enhanced-ai-assisted-development/?linkId=16710004Нужно

@Golang_google


#Genkit #GoLang #GoogleAI #AIDevelopment #OpenSource #RAG
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍2🔥2
🌌 xAI готовит Grokipedia — открытую базу знаний, где миссия одна: правда.

📖 Что известно:
- Это будет полностью открытый репозиторий знаний без ограничений на использование.
- Основан только на проверенных фактах и правде.
- Задуман как источник, которому смогут доверять и люди, и ИИ.

Почему это важно
Grokipedia — часть миссии xAI: понять Вселенную и дать доступ к истине в её чистейшей форме.

🔮 Grokipedia уже близко...

#xAI #AI #knowledge #opensource
👍12🔥7😁3🤔3
Forwarded from Machinelearning
✔️ Ling-1T - новая модель от inclusionAI с 1 триллионом параметров

Модель на 1 трлн, из них ≈ 50 млрд активны на токен (MoE-архитектура).

Она обучена на 20 трлн+ токенов, специально отобранных для задач логического мышления и рассуждений. Контекст: 128 000 токенов.

Построена на базе Evo-CoT (Evolutionary Chain of Thought) и Linguistics-Unit RL - нового метода обучения для масштабируемых рассуждений. При помощи Evo-CoT модель постепенно улучшает баланс между точностью рассуждений и вычислительной эффективностью. То есть с каждым шагом она пытается делать рассуждения «глубже», но не слишком дорого по ресурсам.

Моделька демонстрирует сильные результаты в задачах кода, математики, логики и фронтенд-генерации.

В архитектуре задействованы Mixture-of-Experts (1/32 активация), MTP слои и маршрутизация экспертов.

Ling-1T показывает, что огромные модели можно сделать не только мощными, но и экономичными.

https://huggingface.co/inclusionAI/Ling-1T

@ai_machinelearning_big_data

#Ling1T #AI #ML #OpenSource #Reasoning #TrillionScale #FP8
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2🔥1
Forwarded from Machinelearning
🧠 Андрей Карпаты научил nanochat считать буквы - и объяснил, как расширять способности модели.

Карпаты показал, как добавить новую функцию в мини-LLM nanochat d32, чьи размеры он сравнил с «мозгом пчелы».

Он обучил модель считать, сколько раз буква r встречается в слове strawberry - и использовал этот пример, чтобы показать, как можно наделять маленькие языковые модели новыми навыками через синтетические задачи.

Он использует задачу SpellingBee, которая генерирует диалоги вида:
> «Сколько букв r в слове strawberry?»
и правильные ответы.

После этого модель дообучается (**SFT**) или проходит обучение с подкреплением (RL), чтобы закрепить навык.

Далее модель проходит дообучение (SFT) или обучение с подкреплением (RL), чтобы закрепить навык.

Карпаты объясняет, что для маленьких моделей важно продумывать всё до мелочей, как разнообразить запросы, как устроена токенизация и даже где ставить пробелы.

Он показывает, что рассуждения лучше разбивать на несколько шагов, тогда модель легче «понимает» задачу.

Nanochat решает задачу двумя способами:
логически, рассуждая пошагово,
— и через встроенный Python-интерпретатор, выполняя вычисления прямо внутри чата.

🧩 Идея в том, что даже крошечные LLM можно «научить думать», если правильно подготовить примеры и синтетические данные.

📘 Полный разбор: github.com/karpathy/nanochat/discussions/164

@ai_machinelearning_big_data

#AI #Karpathy #Nanochat #LLM #SFT #RL #MachineLearning #OpenSource
🔥61