Falcon H1R 7B — языковая ризонинг-модель с открытыми весами на 7 млрд. параметров и контекстным окном в 256 тыс. токенов.
Разработчики утверждают, что их модель способна на равных тягаться с конкурентами от 14 до 47 млрд. параметров. То есть, речь идет о сопоставимой эффективности при разнице в размерах от 2 до 7 раз.
Архитектурно - это гибрид классического Transformer и Mamba. Такое решение принято не ради эксперимента, а ради скорости обработки данных, где Mamba традиционно сильна.
Фундаментом стала базовая модель Falcon H1 Base, которую прогнали через SFT, затем подключили масштабирование через RL с использованием GRPO.
Одной из фишек новинки стало использование механизма Deep Think with confidence (DeepConf) на этапе test-time scaling. Он позволяет модели повышать точность ответов, при этом снижая общее количество генерируемых токенов.
Если смотреть на метрики эффективности, то Falcon H1R 7B выдает до 1500 токенов в секунду. Для сравнения, это почти в 2 раза быстрее, чем показатели Qwen3-8B.
В тесте AIME 24 модель показала точность 88,1%. В математическом бенчмарке MATH-500 результат - 97,4%. И даже в сложном GPQA-D Falcon выбил 61,3 балла.
Веса уже на Hugging Face, причем доступны как полные чекпоинты, так и квантованные версии в формате GGUF.
С запуском проблем быть не должно: заявлена поддержка всех основных фреймворков: Transformers, vLLM и SGLang.
@ai_machinelearning_big_data
#AI #ML #LLM #FalconH1R #TII
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍50❤25🔥16🤗1