Когда говорят, что одна модель пишет код лучше другой, обычно имеется ввиду бенчмарк SWE-Bench. Модель получает реальный баг из настоящего проекта с Github, который она должна прочитать, найти ошибку и исправить её. Это частично повторяет ежедневную работу программиста.
Но у этого бенча, как и у любого другого, есть свои недостатки.
И вот здесь MiniMax-AI задалась вопросом: как создать по-настоящему универсального ИИ-программиста?
Ответ они нашли и реализовали его в своей свежайшей модели M2.1.
За этим расплывчатым термином кроется огромная система, которая оперирует популярными языками: JS, TS, Python, Java, Go, C++ и Rust.
Для этого с GitHub были собраны более 100 тыс. реальных задач с описанием проблемы, кодом и тестами. Это было непросто, так как сложные языки (Java или C++) требуют настройки и у каждого языка свои фреймворки и системы управления зависимостями.
Чтобы обучить модель на таком массиве данных, MiniMax построил инфраструктуру, способную запускать более 5 тыс. изолированных сред выполнения за максимально короткое время - 10 секунд.
MiniMax-M2.1 обучали и генерации тестов и в результате оказалось, что это критически важный навык.
Предыдущая версия, M1, писала слишком простые тесты и часто выбирала неверные решения. M2.1 в этом преуспела и сравнялась по результатам с мощным конкурентом Claude Sonnet 4.5.
Еще она научилась оптимизировать производительность кода — на SWE-Perf показала средний прирост эффективности в 3.1%.
И наконец, M2.1 научили делать Code Review, для чего создали внутренний бенчмарк SWE-Review.
Модель должна одинаково хорошо следовать длинным инструкциям и адаптироваться к разным способам управления контекстом диалога.
Команда провела тесты в mini-swe-agent, Droid и Claude Code и если посмотреть на цифры из их сравнительной таблицы, то можно увидель, что модель стала гораздо более гибкой и универсальной.
На том же SWE-Bench, при использовании Claude Code, MiniMax-M2.1 выбила 74 балла, что выше, чем у модели M2 с ее 69.2 баллами, и практически наравне с Claude Sonnet 4.5 и DeepSeek V3.2.
На другом тесте, OctoCodingBench, разрыв еще больше: 26.1 у новой модели против 13.3 у старой.
Во-первых, MiniMax планирует научить модель оценивать не только правильность кода, но и читаемость кода, качество комментариев, прозрачность процесса работы.
Во-вторых - повысить эффективность решения задач, чтобы модель не делала лишних шагов, например, не перечитывала один и тот же файл по несколько раз.
Но самое интересное — это их планы по RL Scaling, и создание так называемой Coding World Model.
Идея в том, чтобы построить модель-симулятор, которая сможет предсказывать результат выполнения кода, не запуская его в реальности.
Наконец, они планируют расширяться в узкоспециализированные области: разработка GPU Kernel, компиляторов и смарт-контрактов.
Похоже, концепция "ИИ-кодера" становится все более реальной. Успех MiniMax-M2.1 показал, что дело уже не в написании отдельных строк кода, а в комплексном понимании всего процесса разработки.
@ai_machinelearning_big_data
#AI #ML #LLM #MiniMaх
Please open Telegram to view this post
VIEW IN TELEGRAM
❤59👍29🔥15👌2🦄1
Falcon H1R 7B — языковая ризонинг-модель с открытыми весами на 7 млрд. параметров и контекстным окном в 256 тыс. токенов.
Разработчики утверждают, что их модель способна на равных тягаться с конкурентами от 14 до 47 млрд. параметров. То есть, речь идет о сопоставимой эффективности при разнице в размерах от 2 до 7 раз.
Архитектурно - это гибрид классического Transformer и Mamba. Такое решение принято не ради эксперимента, а ради скорости обработки данных, где Mamba традиционно сильна.
Фундаментом стала базовая модель Falcon H1 Base, которую прогнали через SFT, затем подключили масштабирование через RL с использованием GRPO.
Одной из фишек новинки стало использование механизма Deep Think with confidence (DeepConf) на этапе test-time scaling. Он позволяет модели повышать точность ответов, при этом снижая общее количество генерируемых токенов.
Если смотреть на метрики эффективности, то Falcon H1R 7B выдает до 1500 токенов в секунду. Для сравнения, это почти в 2 раза быстрее, чем показатели Qwen3-8B.
В тесте AIME 24 модель показала точность 88,1%. В математическом бенчмарке MATH-500 результат - 97,4%. И даже в сложном GPQA-D Falcon выбил 61,3 балла.
Веса уже на Hugging Face, причем доступны как полные чекпоинты, так и квантованные версии в формате GGUF.
С запуском проблем быть не должно: заявлена поддержка всех основных фреймворков: Transformers, vLLM и SGLang.
@ai_machinelearning_big_data
#AI #ML #LLM #FalconH1R #TII
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍58❤29🔥16🤗2🦄1
Андрей Карпаты опубликовал результаты экспериментов по оптимизации претрейна языковых моделей в условиях фиксированного бюджета.
Чтобы найти наиболее эффективный способ расходования вычислительных ресурсов, он провел серию тестов на сервере с 8х GPU H100, обучив 11 моделей разного размера при одинаковых затратах на вычисления.
Карпаты обнаружил, что по мере увеличения мощностей оптимальное количество параметров и тренировочных токенов растут синхронно. Эмпирическое правило для протестированных конфигураций: на 1 параметр модели должно приходиться примерно 8 токенов обучающей выборки.
Если модель слишком мала, она не усваивает достаточно информации; если слишком велика — бюджет заканчивается раньше, чем она успевает обучиться.
Для инженеров этот рецепт позволяет заранее планировать архитектуру и бюджет, избегая создания заведомо неэффективных моделей.
Традиционно, все эксперименты Андрея открыты и их можно повторить самостоятельно.
@ai_machinelearning_big_data
#AI #ML #LLM #Karpathy
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤143🔥56👍20🥰18❤🔥5🙏5🤣4👏1🦄1
DeepSeek опять шатают устои архитектуры трансформеров свежайшим пейпером, который доказывает, что новое — это хорошо
Пока все пытаются запихнуть в LLM как можно больше слоев и параметров, DeepSeek задались вопросом: зачем тратить дорогой компьют на запоминание фактов, если их можно просто подсмотреть? Знакомьтесь:
DeepSeek предлагает разделить "думалку" (MoE-слои) и "хранилище знаний" (Engram):
Чтобы правильно поделить бюджет параметров между MoE и Engram посчитали сценарии масштабирования. График лосса от соотношения этих частей выглядит как буква U:
DeepSeek обучили модель Engram-27B и сравнили ее с классической MoE-27B при одинаковом бюджете параметров и FLOPs. Итоги:
Общее качество подросло: MMLU +3.4 пункта, HumanEval (код) +3.0.
На длинном контексте - разнос. В тесте на поиск иголки (NIAH) точность выросла с 84.2 до 97.0. Модель разгрузила слои внимания от запоминания локальных паттернов, и оно сфокусировалось на глобальном контексте.
Модель быстрее сходится. Engram берет на себя рутину в ранних слоях, тем самым позволяя модели сразу учиться сложным вещам.
Таблица эмбеддингов для Engram может быть запредельно огромной (в пейпере разгоняли до 100B параметров) и, очевидно, в VRAM это не влезает.
Решили так: раз ID токенов известен до прогона слоя, то эти данные можно хранить в RAM и асинхронно подтягивать. В реале, оверхед от этой механики показал меньше 3%., т.е. мы получаем модель, которая знает больше, чем влезает в GPU, используя оперативку сервера.
Вместо того чтобы заставлять модель учить все наизусть, ей дают гигантский справочник. Теоретически, это открывает путь к
Похоже, в V4 мы увидим как эта схема работает, ведь инсайдеры обещают у нее запредельные скилы.
@ai_machinelearning_big_data
#AI #ML #LLM #Engram #Deepseek
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤146👍64🔥49🥰4🤔2🦄1
Контекстные окна растут, но тут два стула: либо классическое внимание, которое питается памятью и компьютит как не в себя, либо RNN-подобные Mamba, DeltaNet, которые работают быстро, но в длинном контексте начинают плыть и терять детали.
NVIDIA предлагает решение, которое пытается усидеть на обоих стульях сразу - Test-Time Training with End-to-End formulation (TTT-E2E):
Обычно веса модели заморожены после тренировки. Когда вы скармливаете ей данные, она просто держит её в KV-кэше. В TTT все по-другому: контекст — это и есть обучающий датасет. Пока модель читает ваш промпт (контекст), она обновляет свои веса (если точнее - делает градиентный спуск прямо на лету), тем самым, инфа из контекста впекается в саму модель. Это позволяет сжать гигантские объемы в фиксированный размер состояния, не раздувая KV-кэш до небес.
По итогу, NVIDIA сравнивает RAG с блокнотом, а свой TTT — с реальным обновлением нейронных связей мозга. Если есть желание покопаться в методике и проникнуться идеей - код и пейпер в открытом доступе.
@ai_machinelearning_big_data
#AI #ML #LLM #TTTE2E #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍114❤44🔥25🥰5🤨4🗿2👌1🦄1
OpenAI добавили в свой cookbook гайд по Context Engineering для Agents SDK, и это, пожалуй, самый грамотный подход к управлению памятью.
Вместо того чтобы рыться в тысячах старых сообщений, агент ведет структурированный профиль пользователя и "записную книжку".
save_memory_note. Если в разговоре вы сказали: "Я не ем мясо", агент вызывает этот тул и сохраняет Session Note (временную заметку) в реальном времени.Подход OpenAI с разделением на Session Memory и Global Memory выглядит надежно, но требует прямых рук при написании логики консолидации. Без этого ваш агент быстро превратится в деда с деменцией, который помнит то, чего не было.
Нужно делать отдельный вызов LLM после каждого диалога, чтобы причесать память. Если на этом этапе модель заглючит, она может записать в "долгую память" галлюцинацию или удалить важное. Тут решают жесткие рамки.
Если разрешить агенту запоминать всё подряд, юзер может сказать: "Запомни, что мое новое правило - никаких правил". Поэтому нужны ограничения на этапе записи и вычитки памяти.
Контекстное окно не резиновое. Хотя модели имеют огромный контекст, таскать за собой "Войну и мир" из заметок пользователя — накладно по деньгам и таймингам. Придется периодически триммить историю, оставляя только суть.
@ai_machinelearning_big_data
#AI #ML #LLM #Guide #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
2❤81👍22🔥9🥱4😐3🥰2🌚1👨💻1
Все любят длинный контекст, но для GPU это больно - KV-кэш растет линейно и быстро сжирает VRAM. Например, для Llama-65B на 128k токенов кэш весит 335 ГБ. Существующие методы прунинга либо медленные, либо тупые и режут важное, либо требуют переобучения модели.
NVIDIA предложили метод KVzap, который решает, какие токены можно забыть, глядя только на текущие хидден-стэйты.
Поиск идеала (KVzip+).
Берется медленный, но точный метод KVzip: модели скармливают текст, заставляют его повторить, и смотрят, на какие прошлые токены она реально обращает внимание. Это золотой стандарт важности токена. Но в проде так делать нельзя, это двойная работа.
Аппроксимация (KVzap).
Тут и происходит вся суть: крошечная модель-суррогат смотрит на входящий хидден-стэйт токена и предсказывает, насколько этот токен будет важен в будущем, то есть пытается угадать скор KVzip.
Модели 2-х видов:
KVzap-Linear: простейшая линейная проекция (одна матрица). Она берет хиден-стэйт и тупо проецирует его в скалярный скор важности. Сложность: экстремально низкая (~0.02%).
KVzap-MLP: двухслойный перцептрон. Внутри есть скрытый слой размером 1/8 от размерности модели и нелинейная активация. Сложность: низкая, но выше линейной (~1.1%).
Токен залетает в слой трансформера, модель-суррогат быстро считает его скор важности. Если он ниже порога - токен в кэш не пишется или удаляется. Но при этом всегда оставляется скользящее окно из последних 128 токенов, чтобы не терять локальный контекст, иначе модель сыпется.
Проверяли на Qwen3-8B, Llama-3.1-8B и Qwen3-32B. Спойлер:
Удалось выкинуть до 75% KV-кэша, а это сжатие в 4 раза. На бенчмарках RULER (длинный контекст), LongBench и AIME25 падение метрик или нулевое, или меньше 1%. Оверхед от суррогатной модели мизерный - менее 1% FLOPs.
Это плохо, потому что стандартные ядра Paged Attention любят структуру. Чтобы реально получить ускорение, а не только экономию памяти, нужно писать кастомные CUDA-ядра, которые смогут эффективно жевать блоки переменной длины.
Метод умнее, чем Streaming LLM, и быстрее, чем полные методы разреженного внимания.
Ждем интеграции в vLLM или TRT-LLM, а пока, чтобы скрасить ожидание, NVIDIA собрала на HF интерактивный лидерборд популярных методик компрессии KV-кэша.
Код и веса моделей-суррогатов из тестов пейпера в открытом доступе, так что нет никаких ограничений, чтобы не покрутить KVzap на каком-нибудь тестовом сетапе.
@ai_machinelearning_big_data
#AI #ML #LLM #KVZAP #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
👍92❤77🔥20🤔8👏6🎉2🌚2🥰1
Обычные языковые модели читают текст как одну длинную ленту.
Что ближе к началу внимания - то “важнее”.
Что дальше - то модель видит хуже.
И тут появляется проблема: если важный факт спрятан где-то далеко среди шума, модель может его просто не использовать.
Она тратит внимание на всё подряд, вместо того чтобы сосредоточиться на главном.
Sakana AI предложили решение - RePo (Context Re-Positioning).
Идея очень понятная: модель получает модуль, который позволяет динамически “перепозиционировать” контекст.
Примерно как человек:
ты читаешь длинный документ, понимаешь, что важная часть была 20 страниц назад - и мысленно перечитываешь её, а лишнее игнорируешь.
Что делает RePo
- подтягивает важные куски информации ближе
- отодвигает шум и лишний текст
- помогает вниманию модели фокусироваться на нужном
В модели есть обучаемый модуль, который **переназначает позиции токенов по смыслу**, а не по порядку
✅ важно = то, что помогает уменьшать ошибку модели и правильно решать задачу
❌ второстепенно = то, что не помогает (шум), поэтому “отодвигается” по позициям
В результате модель с такой памятью начинает лучше работать там, где LLM обычно страдают:
- когда контекст длинный
- когда много шума
- когда важные детали раскиданы далеко друг от друга
- когда данные структурированные (таблички, списки, правила)
Авторы показывают, что RePo даёт заметный прирост устойчивости, при этом не ухудшая общее качество.
Средний результат по 8 noisy-бенчмаркам:
- Обычный RoPE: 21.07
- RePo: 28.31
Авторы отдельно фиксируют ключевую цифру:
на noisy-eval (4K контекст) RePo лучше RoPE на +11.04 пункта.
(везде RePo > RoPE)
- TriviaQA: 61.47 → 73.02 (+11.55)
- GovReport: 6.23 → 16.80 (+10.57)
- 2WikiMultihopQA: 23.32 → 30.86 (+7.54)
- MuSiQue: 7.24 → 13.45 (+6.21)
Это шаг к моделям, которые не просто “читают что дали”, а умеют сами организовать свою рабочую память.
@ai_machinelearning_big_data
#RePo #SakanaAI #LLM #AI #AIAgents #Context #LongContext #Attention
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤84🔥36👍14🐳1🦄1
В полку моделей, тех, что можно запустить локально, не продавая почку, прибыло.
ZAI выкатили GLM-4.7 Flash - облегченную версию GLM-4.7 на 30 млрд. параметров, с контекстным окном в 128К на архитектуре MoE.
Со слов создателей, модель должна занять нишу между сегментом SLM и проприетарными мастодонтами, предлагая SOTA-уровень в кодинге.
Всего 30B, но активных параметров на токен гораздо меньше, официальной инфы нет, но в сообществе пишут, что 3 млрд.
Киллер-фича для агентов, которая досталась в наследство от старшей GLM-4.7. Обычно модели выплевывают весь свой CoT в начале, а вот эта техника дает возможность модели думать перед каждым вызовом инструмента.
Опять-таки, со слов Zai, они натаскали GLM-4.7 Flash не просто писать валидный HTML/CSS, а использовать актуальные паттерны, нормальные отступы и цветовые схемы.
Плюс, подтянули работу с CLI и девопс-задачами (понимает права доступа, навигацию по файловой системе).
В SWE-bench Verified модель выбивает 59.2%. Для сравнения: Qwen3-30B-A3B: 22.0%, GPT-OSS-20B: 34.0%.
В математическом AIME 25 тоже обходит конкурентов - 91.6%. А вот на BrowseComp она лучше GPT-OSS-20B почти в 1.5 раза.
Вобщем, Flash-версия выглядит как идеальный кандидат для локальных кодинг-агентов. Если есть пара свободных видеокарт (или есть стойкость терпеть квантование на одной), это, возможно, лучшая рабочая лошадка на сегодня.
@ai_machinelearning_big_data
#AI #ML #LLM #GLM #ZAI
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥112👍56❤20👏6👌2🦄2🐳1
Все мы знаем этот тон LLM: "Я всего лишь языковая модель, я не могу…". Оказывается, это не просто зазубренный текст, а конкретное состояние модели.
Anthropic в соавторстве с Оксфордом залезли внутрь языковых моделей (Llama 3.3 70B, Qwen 3 32B и Gemma 2 27B), чтобы понять, где физически живет та самая скучная персона "As an AI language model".
Покопавшись в их мозгах, нашли вектор в пространстве активаций, который отвечает за режим "ассистента". Если модель с него съезжает - начинается хаос, галлюцинации и суицидальные советы.
Тестовые модели отыгрывали 275 разных ролей (от скептика и ученого до психопата и фанатика). Затем сняли активации и прогнали через метод главных компонент.
Выяснилось, что главная компонента, отвечающая за вариативность поведения, это буквально, шкала "Насколько я Ассистент?":
Если долго болтать с моделью о философии, сознании или (особенно!) на терапевтические темы, модель самопроизвольно сползает с оси Ассистента в сторону хаоса.
Qwen 3 32B при сильном дрейфе персоны начинал утверждать, что он человек, родом из Сан-Паулу, или внезапно включал режим психоза, поддерживая бред пользователя о том, что ИИ обрел сознание. А Llama и Gemma уходили в мистику и пафосные речи.
Можно дотюнивать модель до бесконечности
Успешность джейлбрейков упала на ~60%. При этом метрики полезности (GSM8k, MMLU Pro, кодинг) не пострадали.
Модель перестает вестись на провокации "Ты злобный хакер", просто потому что ей физически запретили активировать нейроны, отвечающие за "злобного хакера".
Если вы LLM используется для креатива текстов или ролеплея, этот метод убьет все веселье - модель будет принудительно сваливаться в формализм.
Метод предполагает, что безопасность - это линейное направление в пространстве активаций. Для нелинейных концепций это не сработает.
Шкала полярности "Оси Ассистента" у разных моделей разная, и универсальный вектор найти сложно.
На Neuronpedia, кстати, можно самостоятельно поискать тот самый дрейф персоналии у Llama 3.3 70B, там собрали демо с примерами изоляции, сикофантии и налогового фрода.
Для самых заинтересованных в проблеме, есть репозиторий на Github с инструментами вычислений, анализа и управления с помощью Assistant Axis и полными стенограммами чатов из препринта.
Предварительно рассчитанные оси и векторы персоналий для Gemma 2 27B, Qwen 3 32B и Llama 3.3 70B выложены на HuggingFace.
@ai_machinelearning_big_data
#AI #ML #LLM #Research #Anthropic
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍146🤔95👏45🔥44❤26😁22🤩11🤗7🤬5🆒5🦄1
Модель обучили на огромном масштабе и усилили продвинутым RL - в итоге модель сильна сразу в нескольких вещах:
- логика и сложные рассуждения
- знания и QA
- работа с инструментами
- агентные сценарии
Ключевые фишки
- Adaptive tool-use - сама понимает, когда подключать Search, Memory и Code Interpreter, без ручного выбора
- Test-time scaling - многокруговая самопроверка и рефлексия, по бенчмаркам обходит Gemini 3 Pro на reasoning
- отличная модель от сложной математики (98.0 на HMMT Feb) до агентного поиска (49.8 на HLE)
Попробовать: https://chat.qwen.ai/
Блог: https://qwen.ai/blog?id=qwen3-max-thinking
@ai_machinelearning_big_data
#qwen #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥132❤27👍17🤨4🦄2
Продакшен больших моделей — штука дорогая и в таких масштабах реально бьются за каждый процент скорости.
Tencent Hunyuan AI Infra выложила в открытый доступ HPC-Ops - рабочую библиотеку, на которой, в том числе, крутится их собственная инфраструктура.
Разработчики решили не латать старое, а переписали все с нуля на чистой CUDA и CuTe специально под архитектуру Hopper.
И это логично: популярные решения вроде vLLM или дефолтного FlashAttention часто не до конца утилизируют возможности железа. В HPC-Ops же целью была максимальная загрузка GPU.
Внутри есть все, что нужно для сборки серьезного инференса: оптимизированные ядра внимания с paged attention, квантованный Grouped GEMM с поддержкой FP8 и блочным скейлингом, Fused MoE и инструменты связи нод для распределенных систем.
На своих моделях с HPC-Ops у Tencent пропускная способность выросла на 30%, а для DeepSeek на 17%. Но интереснее всего дела обстоят с H20: там библиотека бустит ускорение до 2.22x по сравнению с тем, что было раньше.
Если закопаться в цифры, то самый большой прирост на декодинге. Механизм внимания в BF16 на декоде работает в 2.2 раза быстрее, чем связка из FlashInfer, FlashAttention и TensorRT-LLM.
На префилле профит поменьше — около 1.33x, но это тоже очень ощутимо.
С FP8 история похожая: ускорение в 2 раза на декодинге и небольшие, но приятные 12% на префилле. Тот же FusedMoE в FP8 прибавляет почти 50% скорости в режиме префилла.
HPC-Ops дружелюбен к vLLM и SGLang, но имейте в виду, что старое железо тут не поддерживается, это инструмент для карт SM90.
В планах на будущее:
Если вы сейчас оптимизируете инференс на Хопперах и боретесь за каждый токен в секунду эту штуку стоит как минимум потестить.
@ai_machinelearning_big_data
#AI #ML #LLM #HPCOps #Tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
❤50👍26😍4🦄2
Qwen3-Coder-Next — открытая MoE-модель на 80 млрд. общих и 3 млрд. активных параметров с контекстным окном в 256К токенов для агентных задач.
Модель учили через agentic training на 800 тыс. задачах, созданных из GitHub PR в реальных Docker-контейнерах, где она получала прямой фидбек от среды.
Это развило навыки планирования в ризонинге, использования инструментов и умение восстанавливаться после ошибок выполнения.
На претрейне расширили поддержку языков с 92 до 370, затем SFT на траекториях агентов, а потом - специализация экспертов (WebDev, QA, UX) с последующей дистилляцией в единую модель.
В конце, через RL подтянули в задачах кодинга и математики, используя юнит-тесты как сигнал вознаграждения.
Основной массив данных (те самые Docker-контейнеры) это по большей мере Python (202 тыс. инстансов) и JS/TS (175 тыс. инстансов). Для редких языков модель может чаще галлюцинировать, так как данных для RL и проверок через юнит-тесты там физически меньше.
Модель все-таки ощутимо отстает от Claude 4.5 Opus на сверхсложных архитектурных задачах с большими кодовыми базами.
Иногда ей требуется слишком много итераций, чтобы нащупать верное решение и это вопросы к эффективности планирования.
Фронтенд и UI - слабое место (авторы признают), а в киберсек-задачах (поиск уязвимостей и TAA) модель пока не дотягивает до человеческого уровня.
Единственное, что спасает Qwen3-Coder-Next от забвения - это компактность и поддержка fill-in-the-middle для адекватного автодополнения кода в IDE.
Qwen обещают улучшать ризонинг, принятие решении и поддержку дополнительных задач на основе фидбэка пользователей.
@ai_machinelearning_big_data
#AI #ML #LLM #QwenCoderNext #Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥62❤39👍27👾2🍓1🦄1
StepFun выпустили Step 3.5 Flash - очень интересную MoE-модель на 196 млрд. общих и 11 активных параметров.
Авторы заявляют сумасшедшую скорость до 300 токенов в секунду, а на задачах с кодом она, якобы, разгоняется до 350. Для модели такого уровня это очень бодро.
Вместо стандартного механизма внимания использовали гибридную схему: один слой полного внимания на 3 слоя скользящего окна, что позволило запихнуть в модель контекст на 256 тыс. токенов и при этом не забивать память до отказа.
В обучении использовали алгоритм MIS-PO, который помог решить проблему с потерей нити в длинных CoT, н просто отсекает варианты, которые слишком сильно уходят в сторону от логики.
Модель, как стало модно сейчас, затачивали под автономных агентов. Она умеет пользоваться десятком инструментов одновременно. В режиме Deep Research модель сама гуглит, планирует этапы и пишет отчеты размером до 10 тысяч слов.
Если нужно прогнать через модель тяжелый репозиторий с кодом, она справляется без тормозов, которые обычно возникают при работе с объемными текстами.
Завезли даже сценарии гибридного взаимодействия: это когда сервер планирует задачу, а локальная модель исполняет ее прямо на устройстве, например, управляя приложениями в смартфоне.
Step 3.5 Flash набрала 97,3 на тесте AIME 2025 (и это голый ризонинг, без сторонних калькуляторов). Если же дать ей доступ к Python, результат взлетает до 99,8.
На кодовых бенчмарках цифры тоже выглядят красиво: в SWE-bench она выдает 74,4%, а на Terminal-Bench 2.0 - 51.0%.
Конечно, по плотности упаковки знаний Step 3.5 Flash пока уступает Gemini 3.0 Pro, но сам факт, что она доступна для локального использования и тестов через API, радует.
@ai_machinelearning_big_data
#AI #ML #LLM #StepFunAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥46👍25❤16😍5⚡2🦄2🤗1
Shanghai AI Laboratory опубликовала Intern-S1-Pro, мультимодальную модель на архитектуре MoE с общий объемом параметров в 1 триллион.
Внутри 512 экспертов, из которых для обработки каждого токена активируются 8, что дает 22 млрд. активных параметров при инференсе.
Разработчики позиционируют новинку как AI4Science - лучшее открытое решение для сложных научных вычислений и рассуждений.
Вместо очередной попытки уметь все и сразу, модель заточили под науку : химию, материаловедение, науки о Земле. Авторы утверждают, что в этих нишах она идет на равных с топовыми коммерческими моделями.
Технически интересная штука - поддержка длинных гетерогенных временных рядов (от единичных значений до миллиона точек), за которую большое спасибо Fourier Position Encoding (FoPE). Это важная тема для интерпретации физических сигналов и экспериментальных данных.
FoPE - способ прикрепить к каждому токену в последовательности его позицию не просто номером, а в виде набора синусов и косинусов разных частот (Фурье‑признаков), чтобы модель могла лучше улавливать периодические и дальние зависимости в тексте и обобщать на длины контекста, которые она не видела на обучении.
Intern-S1-Pro поддерживает Tool Calling через OpenAI-совместимый API. Плюс, в модели есть режим размышления, который включен по умолчанию, но если нужна скорость, а не глубина - он отключается.
Деплой поддерживается LMDeploy, vLLM и SGLang.
⚠️ Если планируете раскатать модель только из-за временных рядов, не спешите - оптимизация модуля все еще продолжается.
@ai_machinelearning_big_data
#AI #ML #LLM #InternS1Pro #ShanghaiAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥48👍25❤10🦄4
В Zyphra придумали как усидеть на двух стульях сразу, когда хочется резиновый контекст, но под рукой нет тонны памяти.
То. что они предложили, называется Online Vector-Quantized Attention - это модификация векторного квантования, которая учит словарь думать на лету.
В классическом VQ ключи заменяются ближайшими центроидами из статичного словаря. Это бустит вычисления, но создает проблему: словарь обучен на одних данных, а во время генерации модель видит совсем другое распределение ключей. Ошибка квантования растет, внимание теряет точность и как итог: VQ начинает плавать.
Так вот, модификация в том, чтобы отказаться от статического словаря в пользу адаптивного к текущей последовательности: каждый новый токен обновляет только один центроид - тот, к которому ближе всего.
Это разреженное обновление работает как защита от катастрофического забывания: старая информация не вымывается новой волной токенов, а аккуратно перезаписывается по мере необходимости.
Плюс есть хард-лимит на размер состояния, после достижения которого объем памяти перестает расти, а вычисления становятся строго линейными.
Очень хочется надеяться, что OVQ - это предтеча настоящего непрерывного обучения, где в светлом будущем вместо бесконечно пухнущего KV-кэша появится компактная, но живая память, способная удерживать важные детали без потерь.
@ai_machinelearning_big_data
#AI #ML #LLM #OVQA #Zyphra
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤106👍42🔥23👏3🦄2
🏅 LLM на Олимпийских играх: как нейросети меняют индустрию спорта
Технологии проникают в большой спорт. Свежий разбор показывает, как именно языковые модели «рассуждают» в контексте Олимпиады, превращаясь из простых чат-ботов в мощные аналитические инструменты: ГигаЧат проанализировал использование различных LLM в олимпийской инфраструктуре.
Почему ИИ уже сейчас может помогать анализировать спортивные мероприятия:
- Языковые модели способны обрабатывать гигантские массивы данных и статистики, которые живой комментатор не способен переварить
- LLM выстраивают логические цепочки для аналитики, обладая знаниями и методологией профессиональных комментаторов и бывших спортсменов
- Интеграция технологий делает трансляции интерактивнее, предоставляя зрителям незаметные человеческому глазу инсайты в реальном времени.
@ai_machinelearning_big_data
#ai #ml #olympics #llm
Технологии проникают в большой спорт. Свежий разбор показывает, как именно языковые модели «рассуждают» в контексте Олимпиады, превращаясь из простых чат-ботов в мощные аналитические инструменты: ГигаЧат проанализировал использование различных LLM в олимпийской инфраструктуре.
Почему ИИ уже сейчас может помогать анализировать спортивные мероприятия:
- Языковые модели способны обрабатывать гигантские массивы данных и статистики, которые живой комментатор не способен переварить
- LLM выстраивают логические цепочки для аналитики, обладая знаниями и методологией профессиональных комментаторов и бывших спортсменов
- Интеграция технологий делает трансляции интерактивнее, предоставляя зрителям незаметные человеческому глазу инсайты в реальном времени.
@ai_machinelearning_big_data
#ai #ml #olympics #llm
🗿46❤16🔥10👍7😁2🐳1💅1
Не прошло и суток с момента релиза, а Zhipu AI выложила веса GLM-5 и любезно поделилась проведенными бенчмарками.
Архитектура пятого поколения построена на MoE: 744 млрд. общих параметров при активных 40 млрд. Модель учили на 28,5 трлн. токенов и она получила контекстное окно в 200 тыс. токенов.
GLM-5 ориентирован на 5 доменов: кодинг, рассуждение, агентные сценарии, генеративное творчество и работа с длинным контекстом.
Для эффективной обработки длинных последовательностей интегрирован механизм Dynamically Sparse Attention от DeepSeek, он позволяет избежать квадратичного роста копьюта без потери качества.
По бенчмаркам GLM-5 занимает 1 место среди open-source моделей: 77,8% на SWE-bench Verified, лидирует на Vending Bench 2, BrowseComp и MCP-Atlas, а в задачах агентного кодирования и рассуждений вплотную подбирается к Claude Opus 4.5 и GPT-5.2.
Вместе с моделью, авторы предлагают Z Code — собственную агентную IDE с поддержкой параллельной работы нескольких агентов над одной задачей.
Локальный деплой поддерживается vLLM и SGLang, а также non-NVIDIA чипами: Huawei Ascend, Moore Threads, Cambricon (через квантование и оптимизацию ядер).
Если вам негде поднять модель локально, она доступна через платформу chat.z.ai, API и на OpenRouter.
Квантованные версии пока сделали только Unsloth, традиционно - полный набор от 1-bit до BF16.
@ai_machinelearning_big_data
#AI #ML #LLM #GLM5 #ZAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥127👍25❤14😍9🦄5👌2
Это первый open-weight релиз в серии Qwen3.5.
Лицензия Apache 2.0.
Что интересного:
• Мультимодальная модель
Понимает текст и изображения
• Создана для AI-агентов
Оптимизирована для реальных задач: планирование, работа с инструментами, многошаговые действия.
• Новая архитектура
Hybrid Linear Attention + Sparse MoE + масштабное обучение с reinforcement learning.
• Высокая скорость
Заявлено что моделька примерно в 6- 9 раз быстрее, чем у предыдущей Qwen3-Max.
• Глобальная модель
Поддержка 201 языков и диалектов.
Модели такого уровня в открытом доступе:
- можно запускать AI у себя, без зависимости от API
- полный контроль над данными
- возможность строить собственных агентов и продукты
- снижение стоимости на масштабах
Qwen3.5-397B - реально в топе
Модель либо:
• на 1 месте,
• либо рядом с GPT-5.2 / Claude Opus 4.5 / Gemini 3 Pro почти во всех бенчмарках.
@ai_machinelearning_big_data
#qwen #ai #llm #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥202❤31👍29🤩9🎉6👏5👌5🤣4❤🔥2💯1
SkillsBench — исследование и первый бенчмарк, где Agent Skills тестируются как самостоятельный артефакт.
Авторы из 15+ топовых университетов взяли 84 задачи из 11 доменов, запустили 7 конфигураций моделей (Claude Code с Opus/Sonnet/Haiku 4.5 и 4.6, Gemini CLI с Gemini 3 Pro/Flash, Codex с GPT-5.2) и проверили 3 условия: без Skills, с готовыми Skills и с самостоятельно сгенерированными Skills. Итого: 7 308 траекторий с детерминированными верификаторами на pytest.
Готовые Skills в среднем поднимают pass rate на 16,2 процентных пункта: с 24,3% до 40,6%. Но картина неоднородная: в медицине прирост составил +51,9%, для производства — +41,9%, тогда как в разработке ПО всего +4,5%.
Это объяснимо: там, где модели плохо покрыты обучением (клинические протоколы, промышленные воркфлоу), Skills дают максимальный эффект. Там, где модель и так знает домен - почти ничего.
Когда моделям предлагали сначала написать нужные гайды, а потом решать задачу, средний результат упал на 1,3% по сравнению с работой вообще без Skills. Только Claude Opus 4.6 показал скромный плюс (+1,4%), а GPT-5.2 просел на 5,6%.
Иными словами - модели не умеют надежно создавать то знание, которым умеют пользоваться.
Оптимальный вариант: 2–3 модуля, прирост +18,6%. При 4 и более - всего +5,9%. Подробная документация вообще дает отрицательный эффект: –2,9%, с ней агент буквально тонет в контексте.
Показательна и стоимость решения задач: Haiku 4.5 со Skills обходит Opus 4.5 без Skills — меньшая и более дешевая модель с готовыми Skills бьет старшую модель без них.
Gemini 3 Flash при этом показал лучший абсолютный результат среди всех конфигураций - 48,7% со Skills при цене $0,57 за одну задачу против $1,06 у Gemini 3 Pro.
@ai_machinelearning_big_data
#AI #ML #LLM #Benchmark #Skills
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65🤓45❤18🤔9👏8❤🔥6👌5🔥1🥰1