378K subscribers
4.37K photos
831 videos
17 files
4.85K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Media is too big
VIEW IN TELEGRAM
✔️ Google подружила Colab с Visual Studio Code.

Компания выпустила расширение, которое напрямую связывает редактор кода со средами выполнения Google Colab. Иными словами, теперь можно работать с локальными .ipynb файлами, но выполнять код на Google Colab. Поддерживается подключение как к бесплатным средам выполнения, так и к премиум-тарифам Colab Pro.

Для начала работы достаточно установить расширение Google Colab из VS Code Marketplace. При выборе ядра для ноутбука появится опция «Colab», после чего нужно будет авторизоваться в аккаунте Google. Расширение также опубликовано в реестре Open VSX для совместимых редакторов.
developers.googleblog.com

✔️ ByteDance представила Depth Anything 3.

Depth Anything 3 может предсказывает пространственно-согласованную геометрию по одному или нескольким изображениям, даже без известных параметров камеры. Ключевая особенность релиза - в радикальном упрощении архитектуры.

Под капотом единый трансформер и унифицированное представление depth-ray. Одна и та же модель теперь решает целый спектр задач: от монокулярной оценки глубины и определения поз камеры до прямой генерации 3D гауссианов для синтеза новых ракурсов.

В тестах DA3 превзошла предыдущие версии. Команда выпустила веса моделей, инструментарий CLI и WebUI на Gradio.
depth-anything-3.github.io

✔️ Sakana AI стал самым дорогим "единорогом" в Японии.

Компания закрыла раунд финансирования на 20 млрд. иен, в результате чего её оценка достигла около $2.635 млрд. Это сделало её самым дорогим непубличным стартапом в истории Японии. Среди инвесторов - Mitsubishi UFJ Financial Group и американские венчурные фонды.

Привлечённые средства будут направлены на разработку собственной LLM, адаптированной под особенности японского языка и культуры. Компания уже сотрудничает с MUFG и Daiwa Securities для создания специализированного ИИ для финансового сектора, а в будущем планирует расширяться в оборонную и обрабатывающую промышленность.
asia.nikkei.com

✔️ Джефф Безос возглавил ИИ-стартап.

Основатель Amazon впервые после ухода с поста CEO занял операционную должность, став соруководителем ИИ-стартапа Project Prometheus. Компания привлекла $6.2 млрд, часть из которых — личные средства Безоса, что делает её одним из самых финансируемых стартапов на ранней стадии. Вторым CEO стал Вик Баджадж, физик и химик, ранее работавший в Google X над проектом Waymo.

Prometheus сфокусируется на создании ИИ-инструментов для ускорения инженерных и производственных процессов в автомобилестроении, аэрокосмической сфере и вычислительной техники. Стартап нацелен на сегмент ИИ-систем для робототехники, научные исследования и разработку материалов.

Несмотря на скрытный режим работы, команда проекта уже насчитывает около 100 специалистов, выходцев из OpenAI и DeepMind и компании Марка Цукербурга.
nytimes.com

✔️ Сценарий из «Чёрного зеркала» становится реальностью.

Актёр Калум Уорти запустил ИИ-платформу 2wai, которая создаёт интерактивные цифровые копии ушедших из жизни людей. Для генерации приложению достаточно нескольких минут видеозаписи с человеком и после их оцифровки, пользователь может взаимодействовать с аватаром своего родственника, симулируя общение на разных этапах жизни.

В сети проект вызвал волну негатива и обвинение создателей в эксплуатации горя. Основные претензии сводятся к тому, что технология мешает здоровому процессу скорби и использует образы людей без их согласия.

Бета-версия приложения уже доступна в App Store. В будущем разработчики планируют ввести платную подписку и выпустить версию для Android.
Calum Worthy в сети Х

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7630🔥14❤‍🔥3🥰2🤩1
Media is too big
VIEW IN TELEGRAM
🌟 Google DeepMind и Google Research представили WeatherNext 2.

Новая погодная модель стала быстрее и более детализированной. Она может генерировать прогнозы в 8 раз быстрее, чем предыдущие версии, с разрешением до одного часа.

Но самое важное - это способность модели создавать сотни возможных сценариев развития погоды. Вместо одного прогноза система показывает целый спектр вероятностей, включая и наихудшие варианты, что критически важно для планирования в чрезвычайных ситуациях.

Каждый такой прогноз генерируется менее чем за минуту на одном TPU-чипе, в то время как традиционным физическим моделям на суперкомпьютере на это потребовались бы часы.

В основе WeatherNext 2 лежит метод Functional Generative Network, или FGN. Эта сеть вводит шум прямо в архитектуру модели, что позволяет ей генерировать физически реалистичные и взаимосвязанные прогнозы.

Интересно, что модель обучалась только на отдельных, разрозненных элементах погоды, которые метеорологи называют "marginals" - это, например, температура в конкретной точке или скорость ветра на определенной высоте.

И на основе этих данных модель самостоятельно учится прогнозировать "joints" — большие, сложные и взаимосвязанные погодные системы. По словам Google, WeatherNext 2 превосходит свою предыдущую версию по 99.9% переменных для прогнозов на срок от 0 до 15 дней.

Данные от WeatherNext 2 уже доступны в Earth Engine и BigQuery для исследователей и разработчиков. Кроме того, технология интегрирована в продукты Google: Поиск, Gemini, Pixel Weather и Weather API для Google Maps, а в ближайшие недели появится и в самих Картах Google.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4320🔥152
Media is too big
VIEW IN TELEGRAM
✔️ Microsoft, Nvidia и Anthropic заключили сделку на $45 млрд.

Компании заключили трехстороннее соглашение, меняющее расклад сил в индустрии. В рамках партнерства Anthropic обязуется закупить вычислительные мощности в Microsoft Azure на $30 млрд. В свою очередь, Nvidia инвестирует в стартап до $10 млрд, а Microsoft вложит еще до $5 млрд.

К тому же, это первое сотрудничество Anthropic и Nvidia на уровне моделей: алгоритмы Claude будут оптимизированы под архитектуры Grace Blackwell и будущие Vera Rubin.

Еще модели Claude Sonnet 4.5, Opus 4.1 и Haiku 4.5 станут доступны клиентам Microsoft Foundry и будут интегрированы в Copilot (GitHub и Microsoft 365). Сделка делает Claude единственной LLM топ-уровня, представленной на всех трех главных облачных платформах мира.
blogs.microsoft.com

✔️ Платформа Replicate интегрируется в Cloudflare.

Cloudflare объявила о присоединении Replicate, платформы для запуска и деплоя ИИ-моделей. Покупка станет частью единой инфраструктуры «AI Cloud», объединяющей глобальную периферийную сеть Cloudflare с инструментарием Replicate для работы с нейросетями.

Для разработчиков это означает крупное обновление сервиса Workers AI. В скором времени каталог из более чем 50 тыс. моделей Replicate станет доступен внутри экосистемы Cloudflare. Фишкой слияния станет поддержка запуска кастомных моделей и дообучения непосредственно на Workers AI.

Существующие API Replicate продолжат работать и получат буст производительности за счет инфраструктуры Cloudflare. Также в планах интеграция с другими сервисами: объектным хранилищем R2, векторной базой Vectorize и шлюзом AI Gateway.
blog.cloudflare.com

✔️ Google Antigravity: среда разработки для управления роем ИИ-агентов.

В отличие от Cursor или GitHub Copilot, Antigravity получил режим Manager View. Это центр управления для оркестрации работы множества агентов, выполняющих задачи параллельно в разных воркспейсах.

Агенты работают на базе Gemini 3 Pro, Claude Sonnet 4.5 или GPT-OSS и имеют прямой доступ к редактору, терминалу и браузеру. Инструмент умеет запоминать контекст прошлых проектов и обучаться на действиях пользователя.

Antigravity уже доступна в публичном превью для macOS, Windows и Linux бесплатно, причём Google обещает «щедрые лимиты» на использование моделей.
antigravity.google

✔️ NVIDIA представила семейство открытых моделей для физических симуляций и научных расчетов.

На конференции SC25 состоялся анонс моделей Apollo, нацеленных на ускорение промышленного инжиниринга. Новое семейство позволит внедрять возможности ИИ в ПО для сложных вычислений в реальном времени — от проектирования микросхем и аэродинамики до прогнозирования климата и задач термоядерного синтеза.

В основе Apollo лежит комбинация нейронных операторов, трансформеров и диффузионных методов, адаптированных под законы физики. Инициативу уже поддержали Siemens, Cadence и Synopsys, которые планируют интегрировать новинку в свои продукты. Модели в скором времени появятся на HuggingFace и платформе NVIDIA NIM.
blogs.nvidia.com

✔️ Ai2 выпустил Deep Research Tulu — открытый аналог OpenAI Deep Research.

DR Tulu — открытая модель на 8 млрд. параметров для создания агентов глубокого поиска, которая может самостоятельно планировать исследование, использовать внешние поисковые инструменты, собирать информацию из множества источников и предоставлять ответы с точными ссылками.

Модель учили на методе RLER (Reinforcement Learning with Evolving Rubrics). Вместо статических наград методика использует динамические критерии оценки, которые эволюционируют вместе с моделью. Это предотвращает взлом вознаграждения и заставляет агента реально анализировать контекст, а не имитировать правильный формат ответа.

По тестам DR Tulu-8B не уступает решениям от OpenAI и Perplexity на задачах long-form research, но работает кардинально дешевле. Стоимость выполнения сложного запроса у нее менее одного цента, тогда как аналогичная задача у OpenAI может стоить $1.80.
allenai.org

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍7232🔥16🤔4🤬3
🌟 Reader3: легковесная читалка для книг от Andrej Karpathy

Андрей Карпаты опубликовал у себя в Github небольшой проект - утилиту под названием reader3.

На первый взгляд, это просто легковесная читалка для электронных книг в формате EPUB, которую можно запустить у себя на компьютере. Но главная идея в том, чтобы читать книги вместе с LLM.

Reader3 разбивает книгу по главам, и пользователь может легко скопировать текст текущей главы и вставить его в свой любимый LLM, чтобы обсуждать сюжет, анализировать стиль или задавать вопросы по тексту.

Но самое интересное здесь — это философия, которая стоит за проектом. Карпаты пишет, что проект написан "на 90% вайбкодингом", просто для иллюстрации идеи и что он не собирается его поддерживать или улучшать.

Я начинаю привыкать читать все (блоги, статьи, главы книг и т. д.) с помощью LLM. Обычно первый проход — ручной, второй — «объяснение/резюме», третий — вопросы и ответы.

В результате я обычно получаю более глубокое понимание, чем если бы я просто прошел дальше. Этот процесс становится у меня одним из самых популярных вариантов чтения.


А вместо этого предлагает пользователям... просто попросить свою языковую модель изменить код так, как им нравится.

Код теперь эфемерный,

— пишет Андрей, намекая на то, что эпоха статичных библиотек и долгой поддержки уходит в прошлое.

Для тех, кто хочет попробовать, процесс максимально прост. Нужно скачать книгу в формате EPUB и запустить пару команд в терминале, используя uv:

uv run reader3.py yourbook.epub

# Then run the server:

uv run server.py


После этого ваша книжная полка станет доступна в браузере по адресу localhost:8123.


📌Лицензирование: MIT License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Karpathy #Github #Book
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6230🔥19🤔9🥱5😁3❤‍🔥2🥰2🤣2🤷1
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI выпустила GPT-5.1-Codex-Max.

GPT-5.1-Codex-Max - агентная модель для «тяжелой» разработки. Основной упор сделан на длительные процессы: теперь модель эффективнее справляется с многочасовым рефакторингом и сложными агентными циклами внутри IDE. Фишка релиза в технологии «уплотнения», благодаря которой модель удерживает контекст на миллионах токенов без потери связности.

По тестам, проведенным OpenAI в SWE-Bench Verified точность выросла до 77,9%, а в SWE-Lancer - почти 80%. Новинка уже стала дефолтной моделью в среде Codex для подписчиков Plus и Pro, а доступ через API разработчики получат в ближайшее время.
openai.com

✔️ Stack Overflow планирует стать провайдером данных для корпоративного ИИ.

На конференции Microsoft Ignite платформа объявила о смене стратегии: теперь это не просто база знаний, а инфраструктурный элемент для корпоративных нейросетей. Обновленный продукт Stack Internal конвертирует внутреннюю экспертизу компаний в формат, доступный ИИ-агентам через MCP.

Технически будет добавлен слой метаданных, формирующий рейтинг надежности. Система анализирует автора, актуальность и связность ответа, чтобы агент мог взвесить достоверность информации перед использованием. CEO компании признался, что этот шаг вдохновлен успешными сделками по продаже данных для обучения моделей (по аналогии с Reddit).
stackoverflow.blog

✔️ Microsoft запустила платформу Agent 365 для управления ИИ-агентами.

Agent 365 — инструмент, который позволяет организациям администрировать парк ИИ-агентов как обычных сотрудников. Платформа использует Microsoft Entra для создания единого реестра всех корпоративных ботов, присваивая каждому уникальный ID для строгого разграничения прав доступа и интеграции с корпоративными данными.

Помимо безопасности (за которую отвечают Defender и Purview), система предлагает специальные дашборды, которые показывают эффективность работы каждого агента в реальном времени. Agent 365 не замыкается на нативном Copilot Studio, он поддерживает open-source фреймворки и сторонние решения от партнеров MS. Инструмент уже появился в админ-панели Microsoft 365 в рамках программы тестирования.
microsoft.com

✔️ Manus тестирует расширение для популярных браузеров.

Manus запустила бета-тестирование Browser Operator — инструмента, который выводит ИИ-агентов из облачных песочниц в рабочую среду пользователя. Расширение, доступное для Chrome и Edge, позволяет автоматизировать действия в сервисах, требующих сложной авторизации (CRM, закрытые аналитические платформы), используя уже активные локальные сессии.

Через коннектор «My Browser» агент получает доступ к нужным вкладкам, а пользователь может в реальном времени наблюдать за его действиями, сохраняя контроль над безопасностью. На данный момент доступ открыт для подписчиков тарифов Pro, Plus и Team.
manus.im

✔️ xAI построит в Саудовской Аравии дата-центр на 500 МВт.

Компания Илона Маска объединилась с саудовской Humain и Nvidia для создания масштабного вычислительного хаба. Проект мощностью 500 мегаватт позволит разместить десятки тысяч GPU для тренировки и инференса следующих поколений моделей Grok.

Для xAI это стратегический шаг: собственный хаб за пределами США позволяет снизить зависимость от аренды облачных мощностей у прямых конкурентов. Структура сделки такая: Nvidia поставляет GPU, за саудитами - земля и финансирование, а xAI получает присутствие на Ближнем Востоке.
bloomberg.com


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5836🔥6🥰6
Please open Telegram to view this post
VIEW IN TELEGRAM
44🔥18👍12😨3🤬1
Media is too big
VIEW IN TELEGRAM
✔️ Релиз семейств моделей SAM 3 и SAM 3D.

Создатели Segment Anything обновили свой стек компьютерного зрения, выпустив третье поколение инструментов SAM. Модель SAM 3 делает ставку на высокую точность: она умеет не только определять и отслеживать объекты в видеопотоке, но и понимает сложные текстовые описания.

Второй релиз, SAM 3D, решает задачу объемной реконструкции. Инструмент преобразует обычные 2D-изображения в 3D-ассеты. Технология разделена на два направления: SAM 3D Objects для воссоздания сцен и предметов, и SAM 3D Body для точной оценки человеческой анатомии и переноса её в виртуальную среду. Код и веса SAM 3 уже опубликованы в открытом доступе, а для 3D-версии разработчики выложили чекпоинты и инструменты инференса.
github.com

✔️ Научная ML-библиотека PINA теперь часть экосистемы PyTorch.

PINA - опенсорсная библитека от SISSA Mathlab для задач Scientific Machine Learning (SciML), нативно построеная на PyTorch и PyTorch Lightning и полностью совместима с PyTorch Geometric. Она предлагает единый подход к решению сложных научных проблем: от аппроксимации дифференциальных уравнений в частных производных до моделирования силовых полей и деформаций объектов.

PINA построена на модульной архитектуре, которая минимизирует шаблонный код и четко разделяет определение задачи, модель, солвер и процесс обучения. Внутри уже предусмотрены необходимые для физического моделирования инструменты: дифференциальные операторы, soft constraints и специфические функции потерь.
pytorch.org

✔️ Nabla Bio анонсировал модель для генерации антител промышленного качества.

Биотех-стартап Nabla Bio объявил о запуске JAM-2, первого алгоритма для создания de novo антител, готовых к применению в фармацевтике. Разработчики позиционируют инструмент как способ перевести создание лекарств из формата случайного перебора в дисциплину точного инженерного дизайна.

Модель показала высокую эффективность даже при работе со сложными мишенями, такими как клеточные рецепторы GPCR. В ходе тестов JAM-2 генерировала антитела с пикомолярной аффинностью, при этом более 50% вариантов сразу соответствовали индустриальным критериям пригодности без дополнительной оптимизации.

Команда из 4 инженеров смогла параллельно обработать 16 разных мишеней менее чем за месяц.
Nabla Bio в сети X

✔️ Стартовал новый сезон турнира Alpha Arena.

Лаборатория Nof1 запустила новый этап соревнования торговых ботов, в котором ИИ-модели управляют акциями на фондовом рынке США. В списке участников — Qwen3, DeepSeek, Claude Sonnet, Gemini, Grok, GPT-5, Kimi 2 и неназванная секретная модель. Каждому алгоритму выделили стартовый депозит в $10 000 и предоставили полную автономию в принятии решений.

Организаторы существенно усложнили турнир новыми сценариями. В режиме «New Baseline» модели используют память и механизм рефлексии для самообучения, а трек «Situational Awareness» позволяет ботам отслеживать рейтинг конкурентов в реальном времени. Наиболее агрессивный режим «Max Leverage» обязывает использовать высокое кредитное плечо.

Прошлый сезон закончился для ИИ-трейдеров неудачно: 4 из 6 моделей ушли в минус.
nof1.ai

✔️ OpenAI запустила специальную версию ChatGPT для учителей.

Компания представила инициативу «ChatGPT for Teachers», открывающую бесплатный доступ к чат-боту для преподавателей американских школ. В этой версии используется защищенное рабочее пространство, которое не передает данные для дообучения нейросетей, соответствуя стандартам конфиденциальности FERPA.

Учителя получат доступ к модели GPT-5.1 Auto, а также нативные интеграции с Canva и Google Drive. Администраторам учебных заведений доступны инструменты для централизованного распределения лицензий. Программа рассчитана до июня 2027 года и позиционируется как автоматизация планирования уроков и сокращения времени на административную рутину.
openai.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3723❤‍🔥7🥰3💘1🦄1
📌Figure рассказала, как поработали их роботы Figure 02 на заводе BMW.

Забегая вперед, это были не лабораторные тесты, а полноценное боевое крещение, которое длилось 11 месяцев. Всего через полгода после запуска, роботы Figure 02 уже были на заводе, а к десятому месяцу они вышли на полную рабочую загрузку.

Роботы трудились 10-часовыми сменами с понедельника по пятницу. За более чем 1250 рабочих часов они загрузили свыше 90 тысяч деталей, внеся свой вклад в производство более 30 тысяч автомобилей серии X3. По оценкам инженеров, за этот период роботы сделали более 1.2 млн. шагов, пройдя расстояние чуть больше 320 км.

Основным кейсом использования стала операция загрузки листового металла — классическая задача по перекладыванию деталей. Процесс требовал от робота взять металлические листы и поместить их в сварочный агрегат с допуском всего в 5 миллиметров.

Чтобы оценить эффективность, инженеры установили жесткие KPI.

🟢Во-первых, на полный цикл отводилось 84 секунды.

🟢Во-вторых, показатель успешной загрузки деталей должен был превышать 99%.

🟢И, наконец, количество вмешательств человека - ноль раз за смену.

Такие условия потребовали от Figure разработки продвинутых алгоритмов координации "рука-глаз" и адаптивной локомоции.

Но любой экспериментальный проект — это прежде всего про поиск слабых мест.

С выходом новой модели Figure 03, второе поколение роботов официально отправляется на пенсию. Опыт, полученный на заводе BMW, напрямую повлиял на архитектуру третьего поколения.

Главным "узким местом" Figure 02 оказалось предплечье. Из-за плотной компоновки и требований к ловкости, эта часть часто перегревалась и была сложна в обслуживании.

В Figure 03 полностью изменили архитектуру электроники запястья. Они убрали распределительную панель и избавились от динамической кабельной разводки. Теперь контроллеры моторов общаются с главным компьютером напрямую.

Это тот самый случай, когда тысячи часов реальной работы на заводе превращаются в конкретные инженерные улучшения.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
64👍37🔥7🥰7🦄5❤‍🔥2🤣2
This media is not supported in your browser
VIEW IN TELEGRAM
💡Внедрение ИИ полностью меняет разработку кода — Т-Технологии представили свою экосистему AI for SDLC

Главное:

• уже 30% всего кода в компании генерирует ИИ. Это не пилот и не эксперимент — это рабочий масштаб
• команда запустила новый сценарий агентского режима — end-to-end генерацию кода. Агент сам понимает задачу, проходит весь цикл, работает со структурой репозитория, создает файлы, запускает утилиты и снимает рутину с инженера
• прогнозируется сокращение time-to-market на 20–40%, а новые модели будут специально обучены под агентские сценарии
• на AIJ объявили, что открывается ранний доступ к агентскому режиму разработчиков

Внутри экосистемы:

•единая AI-архитектура, которая покрывает все этапы SDLC — от анализа и разработки до тестирования, внедрения и SR
•набор специализированных ИИ-решений: от AI Search и генерации SQL до анализа изменений MR, генерации тестов и мониторинга аномалий
•полноценная интеграция в VS Code

Благодаря такому внедрению ИИ в процессы, разработчик теперь фокусируется на важных этапах, а рутинную работу выполняют агенты.

@ai_machinelearning_big_data

#news #ai #ml
🤣36🔥1813👏8👌4👍3🥰3🗿3🙈2
⚡️Сбер представил новую систему синтеза речи для ГигаЧата — в одной модели используются сразу несколько разных уникальных голосов под разные задачи

Обновление позволяет генерировать речь в различных манерах — от естественного Freespeech для общения до подкастного формата, интонаций операторов и традиционного дикторского стиля. Звучание стало более органичным и приближенным к человеческому.

Что умеет новый синтез:

- для разных кейсов применения синтеза сделаны отдельные голоса
воспроизводит паузы, смысловые акценты и эмоциональную окраску
- построен на собственной разработке: GigaChat 3b как основа, специализированный токенизатор и адаптер к LLM
- умеет озвучивать тексты бесконечной длины с учетом контекста, а также клонировать голоса
- внутренние замеры демонстрируют прогресс в качестве и натуральности звука

Зачем это нужно:

- помогает создавать более органичные голосовые интерфейсы
- оптимален для разговорных ассистентов, озвучки подкастов или аудиокниг, а также в автоматизированных колл-центрах

Основные преимущества:

- есть возможность выбора голоса, которые подходят под разные задачи
- управление стилистикой и эмоциями на естественном языке
- самый живой синтез речи, ни у Алисы, ни у OpenAI ничего похожего нет

Новый синтез уже доступен в Voice Mode Гигачата.

@ai_machinelearning_big_data

#ai #ml #speech #llm
42👍19😁13🔥9🦄4🥱2❤‍🔥1
Media is too big
VIEW IN TELEGRAM
✔️ ИИ-система Locus превзошла экспертов в научных исследованиях.

Лаборатория Intology представила новую итерацию своего ИИ-ученого — систему Locus. Главным достижением стал результат на бенчмарке RE-Bench, где Locus обошел команду людей-экспертов, набрав 1.30 балла против человеческих 1.27.

В отличие от агентов, которые упираются в потолок производительности уже через пару часов работы, Locus способен поддерживать прогресс на протяжении нескольких дней. Система использует параллелизацию для одновременного запуска тысяч экспериментов, что позволяет ей решать задачи, требующие глубокого погружения и долгосрочного планирования.

Помимо исследований, Locus показала высокие результаты в оптимизации. В тесте KernelBench она добилась ускорения операций LayerNorm до 100 раз, применив сложные техники асинхронного копирования вместо простого перебора.
intology.ai

✔️ OpenAI открыла доступ к групповым чатам с ChatGPT для всех.

Компания развернула функцию коллективных обсуждений на всех тарифных планах, от Free до Pro. В новой функции пользователи могут создавать треды вместимостью до 20 человек, где нейросеть выступает полноценным участником разговора. Доступ открывается через инвайт-ссылки.

ChatGPT анализирует ход разговора и вступает в диалог либо при прямом упоминании, либо когда алгоритм сочтет вмешательство уместным. Тарификация за генерацию ответов ложится на того пользователя, чей запрос или действие активировали модель в данный момент.

Групповые чаты, по словам OpenAI, полностью изолированы. Бот не сохраняет данные в свою память и игнорирует персональные настройки участников, чтобы избежать утечки личного контекста в общий чат.
openai.com

✔️ Salesforce анонсировала инструменты для контроля за ИИ-агентами.

Компания расширила функциональность платформы Agentforce 360, добавив средства мониторинга и отладки для ИИ-систем. Техническая база обновления включает продвинутую модель трейсинга сессий. Система теперь логирует полный контекст работы агента: пользовательские вводы, внутренние цепочки рассуждений, вызовы LLM и проверки безопасности.

Дополнительный слой управления обеспечивает MuleSoft Agent Fabric — хаб для оркестрации и аудита всех активных агентов в инфраструктуре. Это позволяет разработчикам получать метрики в реальном времени, анализировать паттерны и устранять ошибки до того, как они повлияют на продакшен.
salesforce.com

✔️ Hugging Face AnyLanguageModel: универсальная библиотека для экосистемы Apple.

Инструмент, представленный ИИ-хабом, позиционируется как замена стандартного фреймворка Apple Foundation Models. Пакет унифицирует взаимодействие с нейросетями, позволяя разработчикам использовать единый API для работы с разными бэкендами. Библиотека поддерживает как нативный запуск локальных моделей (через Core ML, MLX, llama.cpp и Ollama), так и подключение к облачным провайдерам.

AnyLanguageModel решает проблему конфликта зависимостей за счет использования traits из Swift 6.1. Это дает строгую модульность: если проекту нужен только MLX-движок, библиотека не будет тянуть в сборку лишний код для других форматов. Сейчас решение находится в ранней стадии, но в планах заявлена поддержка вызова инструментов и протокола MCP.
huggingface.co

✔️ Stability AI и Warner Music Group займутся разработкой моделей для музыкальной индустрии.

Stability AI и мейджор-лейбл объявили о партнерстве, цель которого — создание профессиональных инструментов для генерации аудио, безопасных с юридической точки зрения.

В отличие от существующих решений, новые модели будут обучаться исключительно на лицензионном контенте, что позволит артистам и продюсерам использовать результаты генерации в коммерческих треках без риска нарушения авторских прав.

Компании планируют привлекать к разработке самих музыкантов, чтобы софт решал реальные задачи, а не просто создавал случайные мелодии.
stability.ai

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5028🔥6🥰2🙈2🦄2
🌟 RL-фреймворк для обучения MoE-моделей от создателей Chatbot Arena.

Miles - фреймворк для RL-обучения от команды LMSYS ORG, ориентированный на энтерпрайз-уровень.

Если вы следите за опенсорс разработками, вы наверняка слышали о предшественнике этой системы, проекте slime. Это легкий инструмент, который используют во многих современных пайплайнов пост-трейна. На нем, кстати, запускали GLM-4.6.

Slime доказал, что легковесный дизайн работает, и Miles делает следующий шаг - масштабное обучение архитектур MoE и поддержка тяжелых промышленных нагрузок.

🟡Технические детали.

Miles предлагает то, что называют "True On-Policy". Раньше между тренировкой и инференсом часто возникало расхождение. Теперь же, благодаря инфраструктурному подходу, LMSYS добилась нулевой дивергенции. Это стало возможным благодаря использованию Flash Attention 3, библиотеки DeepGEMM и ядер от Thinking Machines Lab, работающих в связке с torch.compile.

Вторая особенность - в использовании спекулятивного декодирования. Обычно в RL черновая модель замораживается, что мешает ей следовать политике целевой модели. LMSYS добавили онлайн-обучение черновой модели.

Результаты на тестах положительные: ускорение генерации более чем на 25%, особенно на поздних стадиях обучения.

🟡Стабильность.

Для энтерпрайза память - это деньги. В Miles включили механизмы, предотвращающие падение системы при некритичных ошибках OOM и исправили чрезмерное потребление памяти в FSDP.

В дорожной карте проекта обещают поддержку мультимодального обучения, совместимость со SGLang v2 и расширенное спекулятивное декодирование.


🟡Статья
🖥Github


@ai_machinelearning_big_data

#AI #ML #RL #Miles #LMSYS
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍90❤‍🔥129🔥9🦄4
🌟 LLM Council: на ваши запросы отвечает совет из языковых моделей.

Андрей Карпаты опять выходит на связь опубликовал очередной vibecode проект.

Его идея в том, что вместо того, чтобы задавать вопрос одной LLM, вы можете объединить их в «Совет моделей».

LLM Council - это простое локальное веб-приложение, с интерфейсом как у ChatGPT, но с той разницей, что запрос отправляется через Openrouter нескольким LLM. Полученные ответы перекрестно оцениваются и ранжируются, и, наконец, «модель-председатель совета» формирует окончательный ответ.

Более подробно процесс выглядит так:

🟢Этап 1: Сбор мнений. 
Запрос отправляется всем моделям по отдельности, и их ответы собираются. Ответы каждой модели отображаются в отдельной вкладке, чтобы можно было их посмотреть вручную.

🟢Этап 2: Рецензирование. 
Каждая модель получает ответы других моделей. При этом идентификаторы анонимизированы, чтобы исключить «игру в любимчиков» при оценке чужих результатов. На этом этапе ответы ранжируются их по точности и глубине анализа.

🟢Этап 3: Итоговый ответ. 
Модель-председатель принимает все ответы моделей и компилирует их в единый окончательный ответ.


⚠️ Для использования нужен API-ключ OpenRouter. На платформе есть бесплатные модели


🖥Github


@ai_machinelearning_big_data

#AI #ML #LLMCouncil #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
59🔥29👍25🤣17🦄3