Data Science by ODS.ai 🦜
44.6K subscribers
823 photos
89 videos
7 files
1.89K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
Download Telegram
Forwarded from Machinelearning
🌟 NVIDIA OmniVinci: омнимодальная модель, которая бьет рекорды.

OmniVinci - модель, способная одновременно понимать и обрабатывать разные типы информации: текст, изображения, видео и звук.

Модель крайне эффективна, несмотря на то, что была обучена всего на 200 млрд. токенов (что в 6 раз меньше, чем у Qwen2.5-Omni - 1.2 трлн.). Это стало возможным благодаря архитектурным фишкам и тщательному подходу к подготовке данных.

В основе OmniVinci 3 компонента:

🟢Temporal Embedding Grouping (TEG) - упорядочивает эмбеддинги из видео и аудио по временным меткам.

🟢Constrained Rotary Time Embedding (CRTE) - кодирует уже абсолютное время.

🟢OmniAlignNet - выравнивает эмбеддинги видео и аудио в общем латентном пространстве с помощью контрастивного обучения.

Абляция показала, что вклад каждого элемента играет свою важную роль: базовая модель с простой конкатенацией токенов набирает в среднем 45.51 балла. Добавление TEG поднимает результат до 47.72 (+2.21), CRTE — до 50.25 (+4.74 от базовой), а финальный слой в виде OmniAlignNet доводит средний балл до 52.59, что в сумме дает прирост в 7.08 пункта.

Данные для обучения - 24 млн. диалогов, которые пропустили через систему, где отдельная LLM анализирует и объединяет описания из нескольких модальностей, создавая единую и корректную аннотацю.

Итоговый датасет на 36% состоял из изображений, на 21% из звуков, на 17% из речи, 15% - из смешанных данных и на 11% из видео.

В бенчах OmniVinci обошла всех конкурентов. На Worldsense модель набрала 48.23 балла против 45.40 у Qwen2.5-Omni. На Dailyomni - 66.50 против 47.45. В аудио-задачах OmniVinci тоже молодец: 58.40 в MMAR и 71.60 в MMAU.

В распознавании речи модель показала WER 1.7% на датасете LibriSpeech-clean.

Применение модели протестили на практике. В задаче классификации дефектов полупроводниковых пластин, OmniVinci достигла точности 98.1%, что лучше, чем у специализированной NVILA (97.6%), и у более крупную 40-миллиардную VILA (90.8%).


📌Лицензирование кода : Apache 2.0 License.

📌Лицензирование: NVIDIA One Way Noncommercial License.


🟡Страница проекта
🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #NVIDIA #OmniVinci
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3🔥1🤯1
Forwarded from Machinelearning
⚡️ Glyph: масштабирование контекста через визуально-текстовую компрессию

В основе модели лежит простая идея : вместо того чтобы кормить модели километровый текст, Glyph превращает его в изображение и обрабатывает через vision-language модель.

Используется LLM-управляемый генетический алгоритм, чтобы подобрать наилучшие параметры визуального отображения текста (шрифт, плотность, макет), балансируя между сжатием и точностью.

Это радикально снижает вычислительные затраты, сохраняя при этом смысловую структуру текста.

При этом точность почти не падает: на задачах с длинным контекстом Glyph работает на уровне современных моделей вроде Qwen3-8B.

При экстремальном сжатии VLM с контекстом 128K может эффективно обрабатывать задачи, эквивалентные 1M+ токенов в традиционных LLM.

Фактически, длинный контекст становится мультимодальной задачей, а не чисто текстовой.

📄 Подробности: arxiv.org/abs/2510.17800

🧩 Веса: huggingface.co/zai-org/Glyph

👉 Репозиторий: github.com/thu-coai/Glyph

@ai_machinelearning_big_data


#AI #LLM #Multimodal #Research #DeepLearning
9🔥3👍2😢1🙏1
Media is too big
VIEW IN TELEGRAM
🔥 Hugging Face снова выкатили полезные материалы.

Вышел бесплатный плейбук о том, как изнутри строят SOTA-модели.

Без общих слов - только реальные решения и нюансы, которые обычно скрыты внутри исследовательских команд.

Это полноценный мастеркласс на 214 страниц для тех, кто хочет понимать, как устроены современные LLM.

Что внутри:
• Логика построения модели: зачем → что → как
• Как разработчики берут модель и по частям включают/выключают компоненты (или меняют их)
• Архитектура: ключевые выборы и trade-offs
• Искусство подбора и очистки данных
• Как проходит обучение моделей
• Пост-тренинг и RLHF в 2025
• Инфраструктура больших моделей

По первым страницам - уровень деталей как в Ultra-scale playbook.

Ссылка
: https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook#designing-the-model-architecture

Видео: https://www.youtube.com/watch?v=LGzO-Mn0DJQ

#AI #LLM #MachineLearning #HuggingFace

@sql_lib - библиотека МЛ и ИИ книг
🔥9👍52🙏2🥰1😢1
Forwarded from Machinelearning
⚡️ OpenAI выпустила GPT-5-Codex-Mini.

GPT-5-Codex-Mini - более доступная версия флагманского Codex, она в 4 раза эффективней по затратам по сравнению с полной версией GPT-5-Codex при небольшом компромиссе в производительности.

Разница в возможностях минимальна: на SWE-bench Verified версия Mini набрала 71.3%, в то время как старшая GPT-5-Codex - 74.5%. OpenAI рекомендует переключаться на Mini для решения более простых задач или для экономии ресурсов при приближении к лимитам. Старший Codex будет автоматически предлагать переход на Mini, когда пользователь достигнет 90% своего лимита.

Модель уже доступна в CLI и расширении для IDE, а в скором времени появится и поддержка через API.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
6🔥1🥰1🤡1
Forwarded from Machinelearning
🌟 RL-фреймворк для обучения MoE-моделей от создателей Chatbot Arena.

Miles - фреймворк для RL-обучения от команды LMSYS ORG, ориентированный на энтерпрайз-уровень.

Если вы следите за опенсорс разработками, вы наверняка слышали о предшественнике этой системы, проекте slime. Это легкий инструмент, который используют во многих современных пайплайнов пост-трейна. На нем, кстати, запускали GLM-4.6.

Slime доказал, что легковесный дизайн работает, и Miles делает следующий шаг - масштабное обучение архитектур MoE и поддержка тяжелых промышленных нагрузок.

🟡Технические детали.

Miles предлагает то, что называют "True On-Policy". Раньше между тренировкой и инференсом часто возникало расхождение. Теперь же, благодаря инфраструктурному подходу, LMSYS добилась нулевой дивергенции. Это стало возможным благодаря использованию Flash Attention 3, библиотеки DeepGEMM и ядер от Thinking Machines Lab, работающих в связке с torch.compile.

Вторая особенность - в использовании спекулятивного декодирования. Обычно в RL черновая модель замораживается, что мешает ей следовать политике целевой модели. LMSYS добавили онлайн-обучение черновой модели.

Результаты на тестах положительные: ускорение генерации более чем на 25%, особенно на поздних стадиях обучения.

🟡Стабильность.

Для энтерпрайза память - это деньги. В Miles включили механизмы, предотвращающие падение системы при некритичных ошибках OOM и исправили чрезмерное потребление памяти в FSDP.

В дорожной карте проекта обещают поддержку мультимодального обучения, совместимость со SGLang v2 и расширенное спекулятивное декодирование.


🟡Статья
🖥Github


@ai_machinelearning_big_data

#AI #ML #RL #Miles #LMSYS
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2🥰1
Forwarded from Machinelearning
⚡️ Claude Opus 4.5.

Anthropic выпустила Claude Opus 4.5, которую назвала «лучшей в мире».

Модель по тестам выбивает топовые результаты в программировании и работе с агентами. Говорят, что она даже превзошла всех кандидатов-людей на внутреннем тесте.

Модель подешевела. Цена за 1 млн. токенов теперь составляет $5 на вход и $25 на выход.

Для разработчиков добавили новый параметр (low, high и medium), позволяющий балансировать между скоростью ответа и качеством генерации.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
6🥰3🤯1😢1
Forwarded from Machinelearning
🌟 ZAYA1: первая MoE-модель, полностью обученная на стеке AMD.

Есть устойчивое мнение, что серьезное обучение нейросетей возможно только на чипах одной известной компании.

В Zyphra решили доказать обратное, и, в сотрудничестве с AMD и IBM провели эксперимент, который на практике доказал, что есть альтернатива.

Стартап опубликовал техотчет и результат - модель ZAYA1. Это первая модель архитектуры MoE, обученная полностью на платформе AMD.

Сеттинг проекта был действительно "красным": графические процессоры AMD Instinct, сетевые интерфейсы AMD Pensando и программный стек ROCm.

ZAYA1 получилась довольно интересной. У неё 8.3 млрд. общих параметров, из которых активных всего 800 миллионов.

Несмотря на компактность, в тестах она выглядит бодро. В ризонинге, математике и программирование ZAYA1 обошла Llama-3-8B и OLMoE. А по общим показателям встала в один ряд с Qwen3-4B и гугловской Gemma3-12B.

Обучение проходило на кластере IBM Cloud, где модель переварила 14 трлн. токенов. Но дело не только в железе, в папйплайне использовали архитектурные инновации:

🟢Новый механизм внимания - Compressed Convolutional Attention. Он использует свертки внутри блока внимания, это снизило нагрузку на вычисления и память.

🟢Переделали маршрутизатор MoE. Вместо стандартного линейного роутера, ZAYA1 использует сложную последовательность операций, что заставляет "экспертов" внутри нейросети специализироваться гораздо лучше.

🟢Residual Scaling. Добавили обучаемые скалярные гейты в остаточный стрим на выходы каждого блока, чтобы модель контролировала степень забывания.


⚠️ Для запуска инференса потребуется ветка zaya форка transformers из репозитория Zyphra.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Модель
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #MoE #Zyphra
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
7🔥7👍4🥰1🎉1🙏1
Forwarded from Machinelearning
📌This Is How We Are Going to Build AGI: CAIA Google рассказал о состоянии ИИ.

Логан Килпатрик из команды DeepMind беседует с Кораем Кавукчуоглу, CTO DeepMind и по совместительству новым главным архитектором Google по искусственному интеллекту.

Корай Кавукчуоглу рассказал о своих взглядах на текущее состояние ИИ, архитектуру Gemini и стратегию Google по достижению AGI. Он считает, что это «новая эра», где технологии стремительно меняются, и что ближайшие 6 месяцев обещают быть такими же захватывающими, как и предыдущие.

Основные темы интервью:

🟡Успех Gemini 3 и подход к AGI

Недавний запуск Gemini 3 получился суперпозитивным. Но прогресс не замедляется, и Gemini 3, подобно 2.5, снова «отодвинула рубеж по ряду измерений». Центральная философия Google в том, что AGI будет «совместно создаваться с нашими клиентами». Это не чисто исследовательская работа, проводимая в изоляции, а совместное усилие с миром, требующее инженерного мышления.

🟡Новый взгляд на прогресс и бенчмарки

Несмотря на то, что модели Google достигают лидирующих позиций на бенчмарках, истинное мерило прогресса в реальном применении. Старые бенчмарки перестают определять текущий рубеж, и новая мера успеха — это предоставление большей ценности в реальном мире, где модели используют ученые, студенты, юристы и инженеры.

🟡Планы на будущее

Приоритеты для улучшения в будущих версиях Gemini Pro:

🟢Следование инструкциям: Модель должна уметь понимать и выполнять запрос пользователя, а не просто отвечать так, как считает нужным.

🟢Интернационализация: Google сосредоточен на языках, где исторически производительность была невысокой.

🟢Функциональные и инструментальные вызовы: Это критически важные технические области, поскольку они позволяют моделям естественно использовать существующие инструменты.

🟢Код и агентские действия : Код - это база для создания чего угодно в цифровом мире. Корай считает, что агентские действия и код — это наиболее перспективные области роста, в которых еще есть много возможностей для совершенствования.

🟡Интеграция с продуктами и инновации

Интеграция- важная тема для сбора фидбэка от пользователей, который необходим для понимания того, как нужно улучшать модели. Риск для Gemini заключается не в отсутствии масштабирования, а в исчерпании инноваций. Поэтому Google DeepMind и Google Research должны постоянно заниматься исследованиями, чтобы находить новые идеи, которые будут питать «двигатель ИИ» Google.

🟡Единство моделей и генеративные медиа

Генеративные медиа-модели сходятся с текстовыми моделями. Яркий пример - Nano Banana Pro, которая показала, как слияние понимания мира из текста с пониманием из изображений позволяет модели создавать более детализированные и концептуально связные изображения, например, инфографику на основе сложных документов.

Фоном идет история о личном пути Корая Кавукчуоглу : от исследователя Deep Learning в DeepMind в 2012 году до текущей руководящей роли.

🔜 Смотреть полное интервью на Youtube


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥31
Forwarded from Machinelearning
🌟 ToolOrchestra: буст ИИ-потенциала за счет координации моделей и инструментов.

NVIDIA совместно с Университетом Гонконга разработала ToolOrchestra - методику обучения дирижеров для ИИ-агентов, и выпустила на ее основе модель Orchestrator-8B.

Это модель, базирующаяся на архитектуре Qwen3 предназначена для оркестрации других моделей и инструментов. Вместо того чтобы решать задачу в одиночку, модель чередует этапы рассуждения с вызовом внешних инструментов.

В ее арсенале поисковые движки, интерпретаторы кода и другие LLM, от узкоспециализированных математических до универсальных гигантов Claude и Llama-Nemotron.

Обучение проводилось с помощью GRPO, который поощрял модель не только за точность, но и за экономическую эффективность.

В результате решение получилось в 2,5 раза быстрее и на 70% дешевле в эксплуатации, чем использование одной лишь флагманской модели для всех этапов задачи, а сама Orchestrator-8B набрала 37,1% в сложнейшем бенчмарке Humanity's Last Exam , обойдя GPT-5 (35,1%).


📌Лицензирование кода : Apache 2.0 License.

📌Лицензирование модели: NVIDIA License.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Orchestrator #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥42🥰2🤔2🤯1🙏1
📏Mera MULTI📏
Большой день для большого релиза!

Встречаем новую мультимодальную версию бенчмарка - MERA Multi.

В мультимодальной версии бенчмарка представлено 18 новых задач, разработанных по методологии основного бенчмарка, которые охватывают визуальное восприятие, аудиопонимание и анализ видео.

📏 MERA Multi это:

✔️Таксономия мультимодальных навыков.

✔️Обновленная универсальная система промптов.

✔️18 новых мультимодальных задач в инструктивном формате для видео, картинок и аудио.

✔️Публичные и приватные датасеты, созданные с нуля для русского языка.

✔️Открытая платформа со сквозной системой подсчёта баллов.

✔️Открытая кодовая база для оценки и тестирования.

✔️Лидерборд, охватывающий как открытые открытые модели, так и проприетарные.

📏Mera Multi
👀Habr
💻GitHub
📚Статья

@mashkka_ds

#llm #mera #ai #genai