An autonomous AI racecar using NVIDIA Jetson Nano
Usually DS means some blue collar work. Rare cases suggest physical interactions. This set by #NVidia allows to build $400/$600 toy car capable of #selfdriving.
#JetRacer comes with a couple examples to get you up and running. The examples are in the format of Jupyter Notebooks, which are interactive documents which combine text, code, and visualization. Once you've completed the notebooks, start tweaking them to create your own racing software!
Github: https://github.com/NVIDIA-AI-IOT/jetracer
#autonomousvehicle #rl #jupyter #physical
Usually DS means some blue collar work. Rare cases suggest physical interactions. This set by #NVidia allows to build $400/$600 toy car capable of #selfdriving.
#JetRacer comes with a couple examples to get you up and running. The examples are in the format of Jupyter Notebooks, which are interactive documents which combine text, code, and visualization. Once you've completed the notebooks, start tweaking them to create your own racing software!
Github: https://github.com/NVIDIA-AI-IOT/jetracer
#autonomousvehicle #rl #jupyter #physical
OpenCV ‘dnn’ with NVIDIA GPUs: 1.549% faster YOLO, SSD, and Mask R-CNN
- Object detection and segmentation
- Working Python implementations of each
- Includes pre-trained models
tutorial: https://t.co/Wt0IrJObcE?amp=1
#OpenCV #dl #nvidia
- Object detection and segmentation
- Working Python implementations of each
- Includes pre-trained models
tutorial: https://t.co/Wt0IrJObcE?amp=1
#OpenCV #dl #nvidia
This media is not supported in your browser
VIEW IN TELEGRAM
Nvidia AI Noise Reduction
#Nvidia launches #KrispAI competitor Noise Reduction by AI on RTX Videocards.
Seems it works significantly better then other that kind of tools. But it needs to have Nvidia RTX officially.
But it possible to run it on older cards. The instruction is below. Or you can just download already hacked executable (also, below)
Setup Guide: https://www.nvidia.com/en-us/geforce/guides/nvidia-rtx-voice-setup-guide/
The instruction: https://forums.guru3d.com/threads/nvidia-rtx-voice-works-without-rtx-gpu-heres-how.431781/
Executable (use it on your own risk): https://mega.nz/file/CJ0xDYTB#LPorY_aPVqVKfHqWVV7zxK8fNfRmxt6iw6KdkHodz1M
#noisereduction #soundlearning #dl #noise #sound #speech #nvidia
#Nvidia launches #KrispAI competitor Noise Reduction by AI on RTX Videocards.
Seems it works significantly better then other that kind of tools. But it needs to have Nvidia RTX officially.
But it possible to run it on older cards. The instruction is below. Or you can just download already hacked executable (also, below)
Setup Guide: https://www.nvidia.com/en-us/geforce/guides/nvidia-rtx-voice-setup-guide/
The instruction: https://forums.guru3d.com/threads/nvidia-rtx-voice-works-without-rtx-gpu-heres-how.431781/
Executable (use it on your own risk): https://mega.nz/file/CJ0xDYTB#LPorY_aPVqVKfHqWVV7zxK8fNfRmxt6iw6KdkHodz1M
#noisereduction #soundlearning #dl #noise #sound #speech #nvidia
Learning to Simulate Dynamic Environments with GameGAN
#Nvidia designed a GAN that able to recreate games without any game engine. To train it, authors of the model use experience collected by reinforcement learning and other techniques.
GameGAN successfully reconstructed all mechanics of #Pacman game. Moreover, the trained model can generate new mazes that have never appeared in the original game. It can even replace background (static objects) and foreground (dynamic objects) with different images!
As the authors say, applying reinforcement learning algorithms to real world tasks requires accurate simulation of that task. Currently designing such simulations is expensive and time-consuming. Using neural networks instead of hand-written simulations may help to solve these problems.
Paper: https://cdn.arstechnica.net/wp-content/uploads/2020/05/Nvidia_GameGAN_Research.pdf
Blog: https://blogs.nvidia.com/blog/2020/05/22/gamegan-research-pacman-anniversary/
Github Page: https://nv-tlabs.github.io/gameGAN/
#GAN #RL
#Nvidia designed a GAN that able to recreate games without any game engine. To train it, authors of the model use experience collected by reinforcement learning and other techniques.
GameGAN successfully reconstructed all mechanics of #Pacman game. Moreover, the trained model can generate new mazes that have never appeared in the original game. It can even replace background (static objects) and foreground (dynamic objects) with different images!
As the authors say, applying reinforcement learning algorithms to real world tasks requires accurate simulation of that task. Currently designing such simulations is expensive and time-consuming. Using neural networks instead of hand-written simulations may help to solve these problems.
Paper: https://cdn.arstechnica.net/wp-content/uploads/2020/05/Nvidia_GameGAN_Research.pdf
Blog: https://blogs.nvidia.com/blog/2020/05/22/gamegan-research-pacman-anniversary/
Github Page: https://nv-tlabs.github.io/gameGAN/
#GAN #RL
Nvidia announced new card RTX 3090
RTX 3090 is roughly 2 times more powerful than 2080.
There is probably no point in getting 3080 because RAM volume is only 10G.
But what really matters, is how it was presented. Purely technological product for mostly proffesionals, techheads and gamers was presented with absolute brialliancy. That is much more exciting then the release itself.
YouTube: https://www.youtube.com/watch?v=E98hC9e__Xs
#Nvidia #GPU #techstack
RTX 3090 is roughly 2 times more powerful than 2080.
There is probably no point in getting 3080 because RAM volume is only 10G.
But what really matters, is how it was presented. Purely technological product for mostly proffesionals, techheads and gamers was presented with absolute brialliancy. That is much more exciting then the release itself.
YouTube: https://www.youtube.com/watch?v=E98hC9e__Xs
#Nvidia #GPU #techstack
Data Science by ODS.ai 🦜
Nvidia announced new card RTX 3090 RTX 3090 is roughly 2 times more powerful than 2080. There is probably no point in getting 3080 because RAM volume is only 10G. But what really matters, is how it was presented. Purely technological product for mostly…
#NVidia performance per dollar
NVidia released a technology to change face alignment on video
Nvidia has unveiled AI face-alignment that means you're always looking at the camera during video calls. Its new Maxine platform uses GANs to reconstruct the unseen parts of your head — just like a deepfake.
Link: https://www.theverge.com/2020/10/5/21502003/nvidia-ai-videoconferencing-maxine-platform-face-gaze-alignment-gans-compression-resolution
#NVidia #deepfake #GAN
Nvidia has unveiled AI face-alignment that means you're always looking at the camera during video calls. Its new Maxine platform uses GANs to reconstruct the unseen parts of your head — just like a deepfake.
Link: https://www.theverge.com/2020/10/5/21502003/nvidia-ai-videoconferencing-maxine-platform-face-gaze-alignment-gans-compression-resolution
#NVidia #deepfake #GAN
Unsupervised 3D Neural Rendering of Minecraft Worlds
Work on unsupervised neural rendering framework for generating photorealistic images of Minecraft (or any large 3D block worlds).
Why this is cool: this is a step towards better graphics for games.
Project Page: https://nvlabs.github.io/GANcraft/
YouTube: https://www.youtube.com/watch?v=1Hky092CGFQ&t=2s
#GAN #Nvidia #Minecraft
Work on unsupervised neural rendering framework for generating photorealistic images of Minecraft (or any large 3D block worlds).
Why this is cool: this is a step towards better graphics for games.
Project Page: https://nvlabs.github.io/GANcraft/
YouTube: https://www.youtube.com/watch?v=1Hky092CGFQ&t=2s
#GAN #Nvidia #Minecraft
14 seconds of April #Nvidia 's CEO speech was generated in silico
Why this important: demand for usage of 3080 and newer GPU models might also get pumped by CGI artists and researchers working in VR / AR tech.
And this raises the bar for #speechsinthesis / #speechgeneration and definately for the rendering of photorealistic picture.
YouTube making of video: https://www.youtube.com/watch?v=1qhqZ9ECm70&t=1430s
Vice article on the subject: https://www.vice.com/en/article/88nbpa/nvidia-reveals-its-ceo-was-computer-generated-in-keynote-speech
Why this important: demand for usage of 3080 and newer GPU models might also get pumped by CGI artists and researchers working in VR / AR tech.
And this raises the bar for #speechsinthesis / #speechgeneration and definately for the rendering of photorealistic picture.
YouTube making of video: https://www.youtube.com/watch?v=1qhqZ9ECm70&t=1430s
Vice article on the subject: https://www.vice.com/en/article/88nbpa/nvidia-reveals-its-ceo-was-computer-generated-in-keynote-speech
YouTube
Connecting in the Metaverse: The Making of the GTC Keynote
See how a small team of artists were able to blur the line between real and rendered in NVIDIA’s #GTC21 keynote in this behind-the-scenes documentary. Read more: https://nvda.ws/3s97Tpy
@NVIDIAOmniverse is an open platform built for virtual collaboration…
@NVIDIAOmniverse is an open platform built for virtual collaboration…
👍1
🔥Alias-Free Generative Adversarial Networks (StyleGAN3) release
King is dead! Long live the King! #StyleGAN2 was #SOTA and default standard for generating images. #Nvidia released update version, which will lead to more realistic images generated by the community.
Article: https://nvlabs.github.io/stylegan3/
GitHub: https://github.com/NVlabs/stylegan3
Colab: https://colab.research.google.com/drive/1BXNHZBai-pXtP-ncliouXo_kUiG1Pq7M
#GAN #dl
King is dead! Long live the King! #StyleGAN2 was #SOTA and default standard for generating images. #Nvidia released update version, which will lead to more realistic images generated by the community.
Article: https://nvlabs.github.io/stylegan3/
GitHub: https://github.com/NVlabs/stylegan3
Colab: https://colab.research.google.com/drive/1BXNHZBai-pXtP-ncliouXo_kUiG1Pq7M
#GAN #dl
EditGAN: High-Precision Semantic Image Editing
Nvidia researches built an approach for editing segments of a picture with supposedly realtime picture augmentation according to the segment alterations. No demo is available yet though.
All the photoshop power users should relax, because appereance of such a tools means less work for them, not that the demand for the manual retouch will cease.
Website: https://nv-tlabs.github.io/editGAN/
ArXiV: https://arxiv.org/abs/2111.03186
#GAN #Nvidia
Nvidia researches built an approach for editing segments of a picture with supposedly realtime picture augmentation according to the segment alterations. No demo is available yet though.
All the photoshop power users should relax, because appereance of such a tools means less work for them, not that the demand for the manual retouch will cease.
Website: https://nv-tlabs.github.io/editGAN/
ArXiV: https://arxiv.org/abs/2111.03186
#GAN #Nvidia
👍3👎1🔥1
🔥 Say Goodbye to LoRA, Hello to DoRA 🤩🤩
DoRA consistently outperforms LoRA with various tasks (LLM, LVLM, etc.) and backbones (LLaMA, LLaVA, etc.)
[Paper] https://arxiv.org/abs/2402.09353
[Code] https://github.com/NVlabs/DoRA
#Nvidia
#icml #PEFT #lora #ML #ai
@opendatascience
DoRA consistently outperforms LoRA with various tasks (LLM, LVLM, etc.) and backbones (LLaMA, LLaVA, etc.)
[Paper] https://arxiv.org/abs/2402.09353
[Code] https://github.com/NVlabs/DoRA
#Nvidia
#icml #PEFT #lora #ML #ai
@opendatascience
👍28🔥8🤣5❤3👏1
Forwarded from Machinelearning
Sana - семейство моделей для генерации изображений с разрешением до 4096x4096 пикселей. Главное преимущество Sana - высокая скорость инференса и низкие требования к ресурсам, модели можно запустить даже на ноутбуке.
Секрет эффективности Sana в ее архитектуре, которая состоит из нескольких инновационных компонентов:
Сжимает изображение в 32 раза, в результате чего значительно сокращается число латентных токенов, что, в свою очередь, повышает эффективность обучения и позволяет генерировать изображения с разрешением 4K.
Использует линейное внимание вместо традиционного, ускоряя генерацию с разрешением 4K в 1.7 раза.
В Linear DiT вместо модуля MLP-FFN используется Mix-FFN, который объединяет в себе свертку 3x3 и Gated Linear Unit (GLU). Mix-FFN позволяет отказаться от позиционного кодирования без потери качества.
Энкодер, основанный на LLM Gemma, который лучше понимает текстовые запросы пользователя и точнее передает их смысл на генерации.
Для точного соответствия "текст - изображение" при обучении энкодера применялись "сложные человеческие инструкции" (CHI), которые научили Gemma учитывать контекст запроса.
Sana создавалась с помощью уникальной стратегии обучения и выборки. В процессе обучения используются несколько VLM (VILA, InternVL2) для создания различных аннотаций к каждому изображению. Затем, на основе CLIP-оценки, были отобраны наиболее подходящие пары "текст-изображение".
Обучение происходило постепенно, начиная с разрешения 512x512 и заканчивая 4096x4096, а алгоритм Flow-DPM-Solver ускорил процесс выборки, сократив количество шагов по сравнению с Flow-Euler-Solver.
Результаты тестирования Sana впечатляют:
⚠️ Для локального инференса модели 0.6B требуется 9GB VRAM, а для модели 1.6B - 12GB VRAM.
# official online demo
DEMO_PORT=15432 \
python app/app_sana.py \
--config=configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
--model_path=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth
@ai_machinelearning_big_data
#AI #ML #Diffusion #SANA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10👍7❤4
Forwarded from Machinelearning
По мере роста объемов данных и сложности вычислений, вычисления на Python и NumPy, основанные на CPU, нуждаются в ускорении для выполнения современных исследований.
cuPyNumeric разработана, чтобы стать заменой библиотеки NumPy, предоставляя сообществу Python распределенные и ускоренные вычисления на платформе NVIDIA. cuPyNumeric позволяет масштабировать вычисления без изменения кода проектов с одного CPU до суперкомпьютеров с несколькими GPU и вычислительными нодами.
Библиотека построена на Legate, поддерживает родной Python и интерфейс NumPy. cuPyNumeric доступен из conda (версия не ниже 24.1) в legate channel. На системах с GPU пакеты, поддерживающие графические ускорители будут выбраны автоматически во время установки.
Пример эффективности cuPyNumeric - обработка 10 ТБ микроизображений многоракурсной микроскопии в виде одного массива NumPy за один день с визуализаций в режиме реального времени.
# Create new conda env
conda create -n myenv -c conda-forge -c legate cupynumeric
# Test via example from repo
$ legate examples/black_scholes.py
Running black scholes on 10K options...
Elapsed Time: 129.017 ms
@ai_machinelearning_big_data
#AI #ML #NumPy #NVIDIA #cuPyNumeric
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥6❤3
Must read and absolute banger of 500 pages.
📕 book
@opendatascience
#nvidia #cuda #freebook
Please open Telegram to view this post
VIEW IN TELEGRAM
😁13👍11❤8🔥2
Forwarded from Machinelearning
1. Руководство по дистилляции от OpenAI
Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.
Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.
- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.
- Создание обучающих данных для компактной модели: Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.
- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.
2. Учебник по дистилляции знаний от PyTorch
Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.
Основные аспекты руководства:
- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.
- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.
- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.
Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.
▪Ссылка
3. Jetson Introduction to Knowledge Distillation от Nvidia
В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.
Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.
Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.
4. Учебник по дистилляции знаний от Keras
Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.
5. Руководство по дистилляции от
huggingface 🤗
Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.
6. Дистилляция знаний для задач компьютерного зрения от huggingface
Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.
#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7❤3✍1👍1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!
Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU!
✨ Как это работает?
Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова
cuml.patch.apply() вы "патчите" установленный у вас scikit-learn прямо в памяти.Теперь, когда вы вызываете, например,
KNeighborsClassifier или PCA из sklearn:Ключевые преимущества:
2 строчки:import cuml.patch и cuml.patch.apply().Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.
👇 Как использовать:
Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):
python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend
Добавьте в начало скрипта:
import cuml.patch
cuml.patch.apply()
Используйте scikit-learn как обычно!
Попробуйте и почувствуйте разницу! 😉
▪Блог-пост
▪Colab
▪Github
▪Ускоряем Pandas
@ai_machinelearning_big_data
#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥21❤4👍3🤡1