Data Science by ODS.ai 🦜
45.1K subscribers
754 photos
84 videos
7 files
1.83K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
Download Telegram
Forwarded from Китай.AI
🔮 CN-AI-MODELS | ИИ модели Китая

🚀
Alibaba представил DianJin-R1 — мощную языковую модель для финансовых задач

Команда Alibaba Cloud и Университет Сучжоу разработали инновационную модель с открытым исходным кодом, которая превосходит аналоги в области финансового анализа.

🔍 В двух словах:
- Модель доступна в двух версиях: 7B и 32B параметров
- Обучена на уникальных финансовых датасетах + мультиагентный синтез данных
- Превышает производительность DeepSeek-R1 и QwQ в тестах

📊 Ключевые особенности:
1️⃣Открытые данные и модели:
- Дамп DianJin-R1-Data включает CFLUE, FinQA и CCC (китайская нормативная проверка)
- Модели на Hugging Face, ModelScope и GitHub
2️⃣Технологии обучения:
- Двухэтапная оптимизация: Supervised Fine-Tuning + Reinforcement Learning
- Система вознаграждений за структурированные выводы и точность
3️⃣Мультиагентный синтез:
- Платформа Tongyi Dianjin генерирует сложные финансовые кейсы через взаимодействие ИИ-агентов

⚙️ Технические детали:

• Использованы Qwen2.5-7B/32B-Instruct как база
• GRPO (Group Relative Policy Optimization) для RL-фазы
• Фичинг: 38k+ экзаменационных вопросов (CFLUE) + 8k англоязычных QA (FinQA)

🔥 Результаты тестов:
▫️ DianJin-R1-7B сравним с топовой QwQ при меньших ресурсах
▫️ DianJin-R1-32B лидирует во всех категориях

"Это не просто шаг вперед в финтехе — мы переосмыслили подход к обучению ИИ для регуляторных задач"
— команда разработчиков.

Официальный сайт | Hugging Face | GitHub

Подробнее в оригинальной статье.

#КитайскийИИ #КитайAI #FinTech #LLM #OpenSource #Alibaba #Qwen
2👍2
Forwarded from Китай.AI
🛡️ CN-AI-ARSENAL | Технологический арсенал Китая

🚀 ROLL: новый фреймворк для масштабируемого обучения с подкреплением от
Alibaba

Китайский гигант Alibaba представил ROLL — инновационный фреймворк для RL-тренировки больших языковых моделей (LLM), который уже собрал 1000+ звезд на GitHub. Это решение радикально упрощает процесс обучения с подкреплением, делая его доступным даже для небольших команд.

🔍 Ключевые возможности:
• Поддержка моделей до 600B+ параметров
• Встроенные алгоритмы: PPO, GRPO, Reinforce++
• Интеграция с vLLM, DeepSpeed, Megatron-Core
• Визуализация через wandb/tensorboard
• Ускорение обучения в 2.3-2.9 раза (тесты на Qwen-7B/30B)

💡 Для кого создан ROLL?
1) Инженеры: распределенные вычисления на тысячах GPU
2) Разработчики: гибкая настройка reward-функций
3) Исследователи: быстрый прототипинг новых алгоритмов

🌟 Технические детали:
- Rollout Scheduler для управления жизненным циклом samples
- AutoDeviceMapping для оптимизации ресурсов
- Параллельные стратегии обучения (5D-параллелизм)
- Асинхронные вычисления reward

GitHub | Технический отчет

#КитайскийИИ #КитайAI #RLHF #Alibaba
2
Forwarded from Китай.AI
🚀 Новый ИИ-агент WebSailor от Alibaba для веб-поиска и анализа данных

Китайский гигант Alibaba представил открытый сетевой агент WebSailor, способный решать сложные задачи поиска и анализа информации в интернете.

Проект уже набрал более 2k звезд на GitHub и возглавил рейтинг открытых ИИ-агентов в тестовом наборе BrowseComp, обойдя даже коммерческие модели!

🔍Основные возможности:
• Многошаговый анализ и перекрестная проверка данных
• Работа с нечеткими запросами и высокой степенью неопределенности

Технические детали для экспертов:

1. DUPO – новый алгоритм RL (обучения с подкреплением), ускоряющий тренировку агента в 2-3 раза
2. Набор данных SailorFog-QA специально разработан для сложных задач с высокой неопределенностью
3. Архитектура основана на Qwen моделях с пост-тренингом

📊Результаты тестирования:
• Превышение показателей DeepSeek R1 и Grok-3
• Второе место после OpenAI DeepResearch среди всех систем
• Отличные результаты на простых задачах (SimpleQA), несмотря на обучение только на сложных данных

GitHub

#КитайскийИИ #КитайAI #ВебПоиск #ИИАгенты #Alibaba
4👍2
🚀 Qwen3-Coder — новая мощная open-source модель от Alibaba для кодинга

Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов

📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков

🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)

Попробовать бесплатно можно:
🟡Через чат: ttps://chat.qwen.ai/)
🟡GitHub link: https://github.com/QwenLM/qwen-code
🟡 Blog:https://qwenlm.github.io/blog/qwen3-coder/
🟡 Model: https://hf.co/Qwen/Qwen3-Coder-480B-A35B-Instruct

Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.

#qwen #ml #ai #llm #Alibaba

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥41
Forwarded from Китай.AI
ИИ против крипторынка: Китайские модели одержали сокрушительную победу

Опубликованы результаты первого в мире конкурса AI-трейдеров, где шесть ведущих языковых моделей соревновались в торговле криптовалютой.

Суть события: Шесть ведущих AI-моделей получили по $10,000 для торговли на реальном рынке без вмешательства человека. Победителем стал тот, кто показал максимальную доходность при контролируемом риске.

«Это своего рода тест Тьюринга для криптотрейдинга» — так организаторы из Nof1.ai охарактеризовали свое мероприятие, проходившее с 17 октября по 3 ноября 2025 года.

📊 Ключевые результаты:
1 место: Alibaba Qwen — доходность свыше 20% 🥇
2 место: DeepSeek — стабильная прибыль 🥈
• Остальные модели: ушли в минус, особенно GPT-5 (потерял более 60%)

🔍 Как проходил конкурс?
• Каждая модель самостоятельно анализировала рынок
• Использовались идентичные исходные данные и условия
• Торговля велась на платформе Hyperliquid
• Запрещена любая внешняя помощь или коррекция стратегии
• Полная автономность — без человеческого вмешательства
• Все транзакции и решения публиковались в реальном времени

🧠 Технические детали:
Модели должны были:
- Выявлять альфа-возможности (шансы на сверхдоходность)
- Определять размер позиции
- Выбирать точки входа и выхода
- Управлять риском в реальном времени

🤖 Характеристики моделей:
Qwen3 Max — агрессивный стиль, высокая доходность при умеренной частоте сделок
DeepSeek — консервативный подход, лучший показатель Шарпа (0.359)
GPT-5 — наименьшая эффективность (-62.66%) при высокой активности

💡 Что это значит для индустрии?
Победа Qwen демонстрирует не просто "знание", а способность применять сложные навыки в условиях реального финансового рынка — анализировать, принимать решения и управлять рисками автономно.

Подробнее о методике и результатах

#КитайскийИИ #КитайAI #Трейдинг #Alibaba #GPT5 #DeepSeek
7👍1😁1