Learn Algorithmic Trading Build and deploy algorithmic trading systems
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 Learn Algorithmic Trading Build and deploy algorithmic trading systems and strategies using Python and advanced data analysis.. - 💾16 700 530
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Открыть в Telegram
📝 Learn Algorithmic Trading Build and deploy algorithmic trading systems and strategies using Python and advanced data analysis.. - 💾16 700 530
How to Deploy TensorFlow Models to the Web
🔗 How to Deploy TensorFlow Models to the Web
Using basic JavaScript to run Python-built models in the browser
🔗 How to Deploy TensorFlow Models to the Web
Using basic JavaScript to run Python-built models in the browser
Medium
How to Deploy TensorFlow Models to the Web
Using basic JavaScript to run Python-built models in the browser
How to Deploy TensorFlow Models to the Web
🔗 How to Deploy TensorFlow Models to the Web
Using basic JavaScript to run Python-built models in the browser
🔗 How to Deploy TensorFlow Models to the Web
Using basic JavaScript to run Python-built models in the browser
Medium
How to Deploy TensorFlow Models to the Web
Using basic JavaScript to run Python-built models in the browser
A Scalable and Cloud-Native Hyperparameter Tuning System
Katib is a Kubernetes-based system for Hyperparameter Tuning and Neural Architecture Search. Katib supports a number of ML frameworks, including TensorFlow, Apache MXNet, PyTorch, XGBoost, and others.
Github: https://github.com/kubeflow/katib
Getting started with Katib: https://www.kubeflow.org/docs/components/hyperparameter-tuning/hyperparameter/
Paper: https://arxiv.org/abs/2006.02085v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 kubeflow/katib
Repository for hyperparameter tuning. Contribute to kubeflow/katib development by creating an account on GitHub.
Katib is a Kubernetes-based system for Hyperparameter Tuning and Neural Architecture Search. Katib supports a number of ML frameworks, including TensorFlow, Apache MXNet, PyTorch, XGBoost, and others.
Github: https://github.com/kubeflow/katib
Getting started with Katib: https://www.kubeflow.org/docs/components/hyperparameter-tuning/hyperparameter/
Paper: https://arxiv.org/abs/2006.02085v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 kubeflow/katib
Repository for hyperparameter tuning. Contribute to kubeflow/katib development by creating an account on GitHub.
GitHub
GitHub - kubeflow/katib: Automated Machine Learning on Kubernetes
Automated Machine Learning on Kubernetes. Contribute to kubeflow/katib development by creating an account on GitHub.
A Scalable and Cloud-Native Hyperparameter Tuning System
Katib is a Kubernetes-based system for Hyperparameter Tuning and Neural Architecture Search. Katib supports a number of ML frameworks, including TensorFlow, Apache MXNet, PyTorch, XGBoost, and others.
Github: https://github.com/kubeflow/katib
Getting started with Katib: https://www.kubeflow.org/docs/components/hyperparameter-tuning/hyperparameter/
Paper: https://arxiv.org/abs/2006.02085v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 kubeflow/katib
Repository for hyperparameter tuning. Contribute to kubeflow/katib development by creating an account on GitHub.
Katib is a Kubernetes-based system for Hyperparameter Tuning and Neural Architecture Search. Katib supports a number of ML frameworks, including TensorFlow, Apache MXNet, PyTorch, XGBoost, and others.
Github: https://github.com/kubeflow/katib
Getting started with Katib: https://www.kubeflow.org/docs/components/hyperparameter-tuning/hyperparameter/
Paper: https://arxiv.org/abs/2006.02085v1
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 kubeflow/katib
Repository for hyperparameter tuning. Contribute to kubeflow/katib development by creating an account on GitHub.
GitHub
GitHub - kubeflow/katib: Automated Machine Learning on Kubernetes
Automated Machine Learning on Kubernetes. Contribute to kubeflow/katib development by creating an account on GitHub.
Интервью с роботом
🔗 Интервью с роботом
С точки зрения робота Сегодня мы продолжаем тему направленного обучения. Этот способ не требует больших данных, использует короткие выборки. Модет быть полезен д...
🔗 Интервью с роботом
С точки зрения робота Сегодня мы продолжаем тему направленного обучения. Этот способ не требует больших данных, использует короткие выборки. Модет быть полезен д...
Хабр
Интервью с роботом
С точки зрения робота Сегодня мы продолжаем тему направленного обучения. Этот способ не требует больших данных, использует короткие выборки. Модет быть полезен для ниш, где больших данных просто нет....
Интервью с роботом
🔗 Интервью с роботом
С точки зрения робота Сегодня мы продолжаем тему направленного обучения. Этот способ не требует больших данных, использует короткие выборки. Модет быть полезен д...
🔗 Интервью с роботом
С точки зрения робота Сегодня мы продолжаем тему направленного обучения. Этот способ не требует больших данных, использует короткие выборки. Модет быть полезен д...
Хабр
Интервью с роботом
С точки зрения робота Сегодня мы продолжаем тему направленного обучения. Этот способ не требует больших данных, использует короткие выборки. Модет быть полезен для ниш, где больших данных просто нет....
End-to-End Adversarial Text-to-Speech
https://arxiv.org/abs/2006.03575
🔗 End-to-End Adversarial Text-to-Speech
Modern text-to-speech synthesis pipelines typically involve multiple processing stages, each of which is designed or learnt independently from the rest. In this work, we take on the challenging task of learning to synthesise speech from normalised text or phonemes in an end-to-end manner, resulting in models which operate directly on character or phoneme input sequences and produce raw speech audio outputs. Our proposed generator is feed-forward and thus efficient for both training and inference, using a differentiable monotonic interpolation scheme to predict the duration of each input token. It learns to produce high fidelity audio through a combination of adversarial feedback and prediction losses constraining the generated audio to roughly match the ground truth in terms of its total duration and mel-spectrogram. To allow the model to capture temporal variation in the generated audio, we employ soft dynamic time warping in the spectrogram-based prediction loss. The resulting model achieves a mean opinion
https://arxiv.org/abs/2006.03575
🔗 End-to-End Adversarial Text-to-Speech
Modern text-to-speech synthesis pipelines typically involve multiple processing stages, each of which is designed or learnt independently from the rest. In this work, we take on the challenging task of learning to synthesise speech from normalised text or phonemes in an end-to-end manner, resulting in models which operate directly on character or phoneme input sequences and produce raw speech audio outputs. Our proposed generator is feed-forward and thus efficient for both training and inference, using a differentiable monotonic interpolation scheme to predict the duration of each input token. It learns to produce high fidelity audio through a combination of adversarial feedback and prediction losses constraining the generated audio to roughly match the ground truth in terms of its total duration and mel-spectrogram. To allow the model to capture temporal variation in the generated audio, we employ soft dynamic time warping in the spectrogram-based prediction loss. The resulting model achieves a mean opinion
End-to-End Adversarial Text-to-Speech
https://arxiv.org/abs/2006.03575
🔗 End-to-End Adversarial Text-to-Speech
Modern text-to-speech synthesis pipelines typically involve multiple processing stages, each of which is designed or learnt independently from the rest. In this work, we take on the challenging task of learning to synthesise speech from normalised text or phonemes in an end-to-end manner, resulting in models which operate directly on character or phoneme input sequences and produce raw speech audio outputs. Our proposed generator is feed-forward and thus efficient for both training and inference, using a differentiable monotonic interpolation scheme to predict the duration of each input token. It learns to produce high fidelity audio through a combination of adversarial feedback and prediction losses constraining the generated audio to roughly match the ground truth in terms of its total duration and mel-spectrogram. To allow the model to capture temporal variation in the generated audio, we employ soft dynamic time warping in the spectrogram-based prediction loss. The resulting model achieves a mean opinion
https://arxiv.org/abs/2006.03575
🔗 End-to-End Adversarial Text-to-Speech
Modern text-to-speech synthesis pipelines typically involve multiple processing stages, each of which is designed or learnt independently from the rest. In this work, we take on the challenging task of learning to synthesise speech from normalised text or phonemes in an end-to-end manner, resulting in models which operate directly on character or phoneme input sequences and produce raw speech audio outputs. Our proposed generator is feed-forward and thus efficient for both training and inference, using a differentiable monotonic interpolation scheme to predict the duration of each input token. It learns to produce high fidelity audio through a combination of adversarial feedback and prediction losses constraining the generated audio to roughly match the ground truth in terms of its total duration and mel-spectrogram. To allow the model to capture temporal variation in the generated audio, we employ soft dynamic time warping in the spectrogram-based prediction loss. The resulting model achieves a mean opinion
Recent Advances in Google Translate">
Recent Advances in Google Translate
🔗 Recent Advances in Google Translate
Posted by Isaac Caswell and Bowen Liang, Software Engineers, Google Research Advances in machine learning (ML) have driven improvements ...
Recent Advances in Google Translate
🔗 Recent Advances in Google Translate
Posted by Isaac Caswell and Bowen Liang, Software Engineers, Google Research Advances in machine learning (ML) have driven improvements ...
research.google
Recent Advances in Google Translate
Posted by Isaac Caswell and Bowen Liang, Software Engineers, Google Research Advances in machine learning (ML) have driven improvements to automa...
Recent Advances in Google Translate">
Recent Advances in Google Translate
🔗 Recent Advances in Google Translate
Posted by Isaac Caswell and Bowen Liang, Software Engineers, Google Research Advances in machine learning (ML) have driven improvements ...
Recent Advances in Google Translate
🔗 Recent Advances in Google Translate
Posted by Isaac Caswell and Bowen Liang, Software Engineers, Google Research Advances in machine learning (ML) have driven improvements ...
research.google
Recent Advances in Google Translate
Posted by Isaac Caswell and Bowen Liang, Software Engineers, Google Research Advances in machine learning (ML) have driven improvements to automa...
How to Approach a Machine Learning Project from Beginning to End
🔗 How to Approach a Machine Learning Project from Beginning to End
A step by step guide inspired by a PhD framework
🔗 How to Approach a Machine Learning Project from Beginning to End
A step by step guide inspired by a PhD framework
Medium
How to Approach a Machine Learning Project from Beginning to End
A step by step guide inspired by a PhD framework
Beginners Guide to Deep Learning with TensorFlow
🔗 Beginners Guide to Deep Learning with TensorFlow
Get up and running with your first neural network with TensorFlow
🔗 Beginners Guide to Deep Learning with TensorFlow
Get up and running with your first neural network with TensorFlow
Medium
Beginners Guide to Deep Learning with TensorFlow
Get up and running with your first neural network with TensorFlow
🎥 Introduction to High Performance Computing for Machine Learning
👁 1 раз ⏳ 1171 сек.
👁 1 раз ⏳ 1171 сек.
At some point running machine learning pipeline locally on a commercial grade computer is not feasible. In this video I will show you the basic of high performance computing applied to machine learning.
Acknowledgment:
Took the background song from Youtube library!
Socials:
Github: https://github.com/yacineMahdid/artificial-intelligence-and-machine-learning
Twitter: https://twitter.com/CodeThisCodeTh1
Linkedin: https://www.linkedin.com/in/yacine-mahdid-809425163/
From wikipedia:
"A supercomputer iVk
Introduction to High Performance Computing for Machine Learning
At some point running machine learning pipeline locally on a commercial grade computer is not feasible. In this video I will show you the basic of high performance computing applied to machine learning.
Acknowledgment:
Took the background song from Youtube…
Acknowledgment:
Took the background song from Youtube…
🎥 Chat Bot With PyTorch - NLP And Deep Learning - Python Tutorial (Part 1)
👁 1 раз ⏳ 1242 сек.
👁 1 раз ⏳ 1242 сек.
In this Python Tutorial we build a simple chatbot using PyTorch and Deep Learning. I will also provide an introduction to some basic Natural Language Processing (NLP) techniques.
1) Theory + NLP concepts (Stemming, Tokenization, bag of words)
2) Create training data
3) PyTorch model and training
4) Save/load model and implement the chat
If you enjoyed this video, please subscribe to the channel!
Article "Contextual Chatbots with Tensorflow":
https://chatbotsmagazine.com/contextual-chat-bots-with-tensorflVk
Chat Bot With PyTorch - NLP And Deep Learning - Python Tutorial (Part 1)
In this Python Tutorial we build a simple chatbot using PyTorch and Deep Learning. I will also provide an introduction to some basic Natural Language Processing (NLP) techniques.
1) Theory + NLP concepts (Stemming, Tokenization, bag of words)
2) Create training…
1) Theory + NLP concepts (Stemming, Tokenization, bag of words)
2) Create training…
🎥 Introduction to Deep Learning - 7.Training Neural Networks Part 2
👁 1 раз ⏳ 4928 сек.
👁 1 раз ⏳ 4928 сек.
Website: https://niessner.github.io/I2DL/
Slides: https://niessner.github.io/I2DL/slides/7.TrainingNN-2.pdf
Introduction to Deep Learning (I2DL) - Lecture 7
TUM Summer Semester 2020Vk
Introduction to Deep Learning - 7.Training Neural Networks Part 2
Website: https://niessner.github.io/I2DL/
Slides: https://niessner.github.io/I2DL/slides/7.TrainingNN-2.pdf
Introduction to Deep Learning (I2DL) - Lecture 7
TUM Summer Semester 2020
Slides: https://niessner.github.io/I2DL/slides/7.TrainingNN-2.pdf
Introduction to Deep Learning (I2DL) - Lecture 7
TUM Summer Semester 2020
Encoder-Decoder Model for Multistep time series forecasting using Pytorch
🔗 Encoder-Decoder Model for Multistep time series forecasting using Pytorch
Learn how to use encoder-decoder model for multi-step time series forecasting
🔗 Encoder-Decoder Model for Multistep time series forecasting using Pytorch
Learn how to use encoder-decoder model for multi-step time series forecasting
Medium
Encoder-Decoder Model for Multistep time series forecasting using Pytorch
Learn how to use encoder-decoder model for multi-step time series forecasting
Part 2: Fast, scalable and accurate NLP: Why TFX is a perfect match for deploying BERT
https://blog.tensorflow.org/2020/06/part-2-fast-scalable-and-accurate-nlp.html
Code: https://colab.research.google.com/github/tensorflow/workshops/blob/master/blog/TFX_Pipeline_for_Bert_Preprocessing.ipynb
🔗 Part 2: Fast, scalable and accurate NLP: Why TFX is a perfect match for deploying BERT
The TensorFlow blog contains regular news from the TensorFlow team and the community, with articles on Python, TensorFlow.js, TF Lite, TFX, and more.
https://blog.tensorflow.org/2020/06/part-2-fast-scalable-and-accurate-nlp.html
Code: https://colab.research.google.com/github/tensorflow/workshops/blob/master/blog/TFX_Pipeline_for_Bert_Preprocessing.ipynb
🔗 Part 2: Fast, scalable and accurate NLP: Why TFX is a perfect match for deploying BERT
The TensorFlow blog contains regular news from the TensorFlow team and the community, with articles on Python, TensorFlow.js, TF Lite, TFX, and more.
blog.tensorflow.org
Part 2: Fast, scalable and accurate NLP: Why TFX is a perfect match for deploying BERT
The TensorFlow blog contains regular news from the TensorFlow team and the community, with articles on Python, TensorFlow.js, TF Lite, TFX, and more.
Опубликован 12 урок курса ( https://www.youtube.com/watch?v=9CDDKaZOp7M ).
В этом уроке мы продолжаем знакомство с пакетом ggplot2, и разберёмся с основой грамматики построения графики слой за слоем.
Весь курс бесплатный, но при желании в качестве благодарности вы можете поддержать этот проект перечислив любую сумму на этой странице (https://secure.wayforpay.com/payment/r4excel_users).
Подписывайтесь (https://bit.ly/36kliAp) на YouTube канал, что бы не пропустить публикацию новых уроков.
Ссылки:
Подписаться на YouTube - https://bit.ly/36kliAp
Видео 12 урока - https://www.youtube.com/watch?v=9CDDKaZOp7M
Материалы к 11 уроку - https://github.com/selesnow/r4excel_users/tree/master/lesson_12
Тесты к 12 уроку - https://onlinetestpad.com/t/rlanguage4excelusers-12
Плейлист курса - https://www.youtube.com/playlist?list=PLD2LDq8edf4pgGg16wYMobvIYy_0MI0kF
Статья о курсе на proglib - https://proglib.io/p/besplatnyy-videokurs-yazyk-r-dlya-polzovateley-excel-2020-04-14
Статья о курсе на Хабре - https://habr.com/ru/post/495438/
https://www.youtube.com/watch?v=9CDDKaZOp7M
🎥 Язык R для пользователей Excel #12: Построение графиков слой за слоем на языке R с помощью gplot2
👁 1 раз ⏳ 1175 сек.
В этом уроке мы продолжаем знакомство с пакетом ggplot2, и разберёмся с основой грамматики построения графики слой за слоем.
Весь курс бесплатный, но при желании в качестве благодарности вы можете поддержать этот проект перечислив любую сумму на этой странице (https://secure.wayforpay.com/payment/r4excel_users).
Подписывайтесь (https://bit.ly/36kliAp) на YouTube канал, что бы не пропустить публикацию новых уроков.
Ссылки:
Подписаться на YouTube - https://bit.ly/36kliAp
Видео 12 урока - https://www.youtube.com/watch?v=9CDDKaZOp7M
Материалы к 11 уроку - https://github.com/selesnow/r4excel_users/tree/master/lesson_12
Тесты к 12 уроку - https://onlinetestpad.com/t/rlanguage4excelusers-12
Плейлист курса - https://www.youtube.com/playlist?list=PLD2LDq8edf4pgGg16wYMobvIYy_0MI0kF
Статья о курсе на proglib - https://proglib.io/p/besplatnyy-videokurs-yazyk-r-dlya-polzovateley-excel-2020-04-14
Статья о курсе на Хабре - https://habr.com/ru/post/495438/
https://www.youtube.com/watch?v=9CDDKaZOp7M
🎥 Язык R для пользователей Excel #12: Построение графиков слой за слоем на языке R с помощью gplot2
👁 1 раз ⏳ 1175 сек.
В этом уроке мы продолжаем изучать пакет ggplot2, предназначенный для построения графиков на языке R.
Данное видео поможет вам разобраться в грамматике построения графики, которая лежит в основе ggplot2.
Мы разберёмся с основными слоями и эстетиками пакета, и научимся изменять график накладывая на него новые слои.
Тест для закрепления пройденного материала: https://onlinetestpad.com/t/rlanguage4excelusers-12
====================
Поддержать автора курса: https://secure.wayforpay.com/payment/r4excel_userYouTube
Язык R для пользователей Excel #12: Построение графиков слой за слоем на языке R с помощью ggplot2
В этом уроке мы продолжаем изучать пакет ggplot2, предназначенный для построения графиков на языке R.
Данное видео поможет вам разобраться в грамматике построения графики, которая лежит в основе ggplot2.
Мы разберёмся с основными слоями и эстетиками пакета…
Данное видео поможет вам разобраться в грамматике построения графики, которая лежит в основе ggplot2.
Мы разберёмся с основными слоями и эстетиками пакета…