Neural Networks | Нейронные сети
11.6K subscribers
802 photos
184 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Elastic под замком: включаем опции безопасности кластера Elasticsearch для доступа изнутри и снаружи

🔗 Elastic под замком: включаем опции безопасности кластера Elasticsearch для доступа изнутри и снаружи
Elastic Stack — известный инструмент на рынке SIEM-систем (вообще-то, не только их). Может собирать в себя много разнокалиберных данных, как чувствительных, та...
​PEGASUS: A State-of-the-Art Model for Abstractive Text Summarization">
PEGASUS: A State-of-the-Art Model for Abstractive Text Summarization

🔗 PEGASUS: A State-of-the-Art Model for Abstractive Text Summarization
Posted by Peter J. Liu and Yao Zhao, Software Engineers, Google Research Students are often tasked with reading a document and producing...
🎥 Machine Learning 101: Classification
👁 1 раз 3992 сек.
Have you always been curious about what machine learning can do for your business problem, but could never find the time to learn the practical necessary skills? Do you wish to learn what Classification, Regression, Clustering and Feature Extraction techniques do, and how to apply them using the Oracle Machine Learning family of products?

Join us for this special series “Oracle Machine Learning Office Hours – Machine Learning 101”, where we will go through the main steps of solving a Business Problem from
​How to Use StandardScaler and MinMaxScaler Transforms in Python - Machine Learning Mastery

🔗 How to Use StandardScaler and MinMaxScaler Transforms in Python - Machine Learning Mastery
Many machine learning algorithms perform better when numerical input variables are scaled to a standard range. This includes algorithms that use a weighted sum of the input, like linear regression, and algorithms that use distance measures, like k-nearest neighbors. The two most popular techniques for scaling numerical data prior to modeling are normalization and standardization. Normalization scales each input variable separately to
​5 видеороликов о пакете dplyr языка R

dplyr – популярный пакет для обработки данных в языке R. Небольшой плейлист из 10-15-минутных роликов познакомит с основным функциями пакета dplyr с учётом последних нововведений версии 1.0.0.

https://proglib.io/w/ef8137a6

🔗 5 видеороликов о пакете dplyr языка R
dplyr – популярный пакет для обработки данных в языке R. Небольшой плейлист из 10-15-минутных роликов познакомит с основным функциями пакета dplyr с учётом последних нововведений версии 1.0.0.
​Как мы взламывали «умную» фабрику

🔗 Как мы взламывали «умную» фабрику
Хотя процесс подключения предприятий к интернету давно уже носит массовый характер, с точки зрения кибербезопасности каждый такой случай уникален, и охватить вс...
🎥 Machine Learning through Streaming at Lyft
👁 1 раз 2462 сек.
Video with transcript included: https://bit.ly/2AVIBot

Sherin Thomas talks about the challenges of building and scaling a fully managed, self-service platform for stream processing using Flink, best practices, and common pitfalls. Thomas goes into the details of how the Lyft system evolved over the last couple of years, as well as the design tradeoffs they made.

This presentation was recorded at QCon London 2020: http://bit.ly/2VfRldq

#Flink #MachineLearning #Streaming
🎥 Deep Learning Text Recognition Using Programmatically Generated Synthetic Data
👁 1 раз 1831 сек.
This presentation covers three important points 1) You can create a text recognition model for Urdu using Deep Learning. 2) You can create synthetic data for Urdu programmatically. 3) The deep learning model recognises synthetic data really well.

This was a presentation I did at BrumAI in November 2018.