Easy Filters - Intro to GPU Pixel Shaders
🔗 Easy Filters - Intro to GPU Pixel Shaders
Image Manipulation (Contrast, Brightness, Blur, Pixellation)
🔗 Easy Filters - Intro to GPU Pixel Shaders
Image Manipulation (Contrast, Brightness, Blur, Pixellation)
Medium
Easy Filters - Intro to GPU Pixel Shaders
Image Manipulation (Contrast, Brightness, Blur, Pixellation)
Искусственный интеллект общего назначения. ТЗ, текущее состояние, перспективы
В наше время словами «искусственный интеллект» называют очень много различных систем — от нейросети для распознавания картинок до бота для игры в Quake. В википедии дано замечательное определение ИИ — это «свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека». То есть из определения явно видно — если некую функцию успешно удалось автоматизировать, то она перестаёт считаться искусственным интеллектом.
Тем не менее, когда задача «создать искусственный интеллект» была поставлена впервые, под ИИ подразумевалось нечто иное. Сейчас эта цель называется «Сильный ИИ» или «ИИ общего назначения».
🔗 Искусственный интеллект общего назначения. ТЗ, текущее состояние, перспективы
В наше время словами «искусственный интеллект» называют очень много различных систем — от нейросети для распознавания картинок до бота для игры в Quake. В википе...
В наше время словами «искусственный интеллект» называют очень много различных систем — от нейросети для распознавания картинок до бота для игры в Quake. В википедии дано замечательное определение ИИ — это «свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека». То есть из определения явно видно — если некую функцию успешно удалось автоматизировать, то она перестаёт считаться искусственным интеллектом.
Тем не менее, когда задача «создать искусственный интеллект» была поставлена впервые, под ИИ подразумевалось нечто иное. Сейчас эта цель называется «Сильный ИИ» или «ИИ общего назначения».
🔗 Искусственный интеллект общего назначения. ТЗ, текущее состояние, перспективы
В наше время словами «искусственный интеллект» называют очень много различных систем — от нейросети для распознавания картинок до бота для игры в Quake. В википе...
Хабр
Искусственный интеллект общего назначения. ТЗ, текущее состояние, перспективы
В наше время словами «искусственный интеллект» называют очень много различных систем — от нейросети для распознавания картинок до бота для игры в Quake. В википе...
Oktoberfest : Quick analysis using Pandas, Matplotlib, and Plotly
🔗 Oktoberfest : Quick analysis using Pandas, Matplotlib, and Plotly
Oktoberfest 2019 has started! Oktoberfest is the world’s largest beer festival and is held annually in Munich since 1810. It lasts…
🔗 Oktoberfest : Quick analysis using Pandas, Matplotlib, and Plotly
Oktoberfest 2019 has started! Oktoberfest is the world’s largest beer festival and is held annually in Munich since 1810. It lasts…
Medium
Oktoberfest : Quick analysis using Pandas, Matplotlib, and Plotly
Oktoberfest 2019 has started! Oktoberfest is the world’s largest beer festival and is held annually in Munich since 1810. It lasts…
🎥 2 01 Do You Live or Die Explaining Machine Learning with Azure and the Titanic dataset Beth Young
👁 1 раз ⏳ 2781 сек.
👁 1 раз ⏳ 2781 сек.
These are the videos from BSidesSTL 2019:
http://www.irongeek.com/i.php?page=videos/bsidesstl2019/mainlist
Subscribestar:
https://www.subscribestar.com/irongeek
Patreon:
https://www.patreon.com/irongeekVk
2 01 Do You Live or Die Explaining Machine Learning with Azure and the Titanic dataset Beth Young
These are the videos from BSidesSTL 2019:
http://www.irongeek.com/i.php?page=videos/bsidesstl2019/mainlist
Subscribestar:
https://www.subscribestar.com/irongeek
Patreon:
https://www.patreon.com/irongeek
http://www.irongeek.com/i.php?page=videos/bsidesstl2019/mainlist
Subscribestar:
https://www.subscribestar.com/irongeek
Patreon:
https://www.patreon.com/irongeek
Understanding probability. Finally!
🔗 Understanding probability. Finally!
Practical guide to probability concepts for data scientists
🔗 Understanding probability. Finally!
Practical guide to probability concepts for data scientists
Medium
Understanding probability. Finally!
Practical guide to probability concepts for data scientists
Список полезных книг по анализу данных, математике, data science и machine learning
Хабр, привет!
Написал пост, который идет строго в закладки, он со списком полезнейших книг по анализу данных, математике, data science и machine learning. Они будут полезны как новичкам, так и профессионалам. Для удобства можете читать здесь или использовать удобный google docs, в нем книги разбиты по столбцам и категориям. Пользуйтесь и прокачивайте скиллы сами + делитесь с коллегами.
Конечно, весь список книг неполный. Поэтому добавляйте в комментарии свои полезные ссылки на крутые книги, самые топовые из них я добавлю в список.
Книги по анализу данных, математике, data science и machine learning:
🔗 Список полезных книг по анализу данных, математике, data science и machine learning
Хабр, привет! Написал пост, который идет строго в закладки, он со списком полезнейших книг по анализу данных, математике, data science и machine learning. Они б...
Хабр, привет!
Написал пост, который идет строго в закладки, он со списком полезнейших книг по анализу данных, математике, data science и machine learning. Они будут полезны как новичкам, так и профессионалам. Для удобства можете читать здесь или использовать удобный google docs, в нем книги разбиты по столбцам и категориям. Пользуйтесь и прокачивайте скиллы сами + делитесь с коллегами.
Конечно, весь список книг неполный. Поэтому добавляйте в комментарии свои полезные ссылки на крутые книги, самые топовые из них я добавлю в список.
Книги по анализу данных, математике, data science и machine learning:
🔗 Список полезных книг по анализу данных, математике, data science и machine learning
Хабр, привет! Написал пост, который идет строго в закладки, он со списком полезнейших книг по анализу данных, математике, data science и machine learning. Они б...
Good resources for machine learning mathematics with lecture notes on machine learning mathematics such as Probability, Statistics, Algebra, Number Theory, Geometry etc. All in one for ML mathematics
https://github.com/Niraj-Lunavat/Maths-for-Artificial-Intelligence
🔗 Niraj-Lunavat/Maths-for-Artificial-Intelligence
Master mathematics for machine learning, Artificial Intelligence. A curated list of awesome mathematics resources. - Niraj-Lunavat/Maths-for-Artificial-Intelligence
https://github.com/Niraj-Lunavat/Maths-for-Artificial-Intelligence
🔗 Niraj-Lunavat/Maths-for-Artificial-Intelligence
Master mathematics for machine learning, Artificial Intelligence. A curated list of awesome mathematics resources. - Niraj-Lunavat/Maths-for-Artificial-Intelligence
GitHub
GitHub - Niraj-Lunavat/Maths-for-Artificial-Intelligence: Master mathematics for machine learning, Artificial Intelligence. A curated…
Master mathematics for machine learning, Artificial Intelligence. A curated list of awesome mathematics resources. - GitHub - Niraj-Lunavat/Maths-for-Artificial-Intelligence: Master mathematics fo...
Santosh-Gupta/SpeedTorch
https://github.com/Santosh-Gupta/SpeedTorch/
🔗 Santosh-Gupta/SpeedTorch
Library for faster pinned CPU ?-? GPU transfer in Pytorch - Santosh-Gupta/SpeedTorch
https://github.com/Santosh-Gupta/SpeedTorch/
🔗 Santosh-Gupta/SpeedTorch
Library for faster pinned CPU ?-? GPU transfer in Pytorch - Santosh-Gupta/SpeedTorch
GitHub
GitHub - Santosh-Gupta/SpeedTorch: Library for faster pinned CPU <-> GPU transfer in Pytorch
Library for faster pinned CPU <-> GPU transfer in Pytorch - GitHub - Santosh-Gupta/SpeedTorch: Library for faster pinned CPU <-> GPU transfer in Pytorch
Автоматизированное машинное обучение на облаке в Python
https://morioh.com/p/c0eec4a0adb1
🔗 Social Network for Developers
Social Network for Developers to discuss topics broader than bugs and issues, write and share knowledge and connect with the best developers
https://morioh.com/p/c0eec4a0adb1
🔗 Social Network for Developers
Social Network for Developers to discuss topics broader than bugs and issues, write and share knowledge and connect with the best developers
Morioh
Automated Machine Learning on the Cloud in Python
Automated Machine Learning using TPOT. Automated machine learning (abbreviated auto-ml) aims to algorithmically design and optimize a machine learning pipeline for a particular problem. In this context, the machine learning pipeline consists of: Feature Preprocessing:…
Making the Invisible Visible: Action Recognition Through Walls and Occlusions
https://arxiv.org/abs/1909.09300
🔗 Making the Invisible Visible: Action Recognition Through Walls and Occlusions
Understanding people's actions and interactions typically depends on seeing them. Automating the process of action recognition from visual data has been the topic of much research in the computer vision community. But what if it is too dark, or if the person is occluded or behind a wall? In this paper, we introduce a neural network model that can detect human actions through walls and occlusions, and in poor lighting conditions. Our model takes radio frequency (RF) signals as input, generates 3D human skeletons as an intermediate representation, and recognizes actions and interactions of multiple people over time. By translating the input to an intermediate skeleton-based representation, our model can learn from both vision-based and RF-based datasets, and allow the two tasks to help each other. We show that our model achieves comparable accuracy to vision-based action recognition systems in visible scenarios, yet continues to work accurately when people are not visible, hence addressing scenarios that are beyond the limit of today's vision-based action recognition.
https://arxiv.org/abs/1909.09300
🔗 Making the Invisible Visible: Action Recognition Through Walls and Occlusions
Understanding people's actions and interactions typically depends on seeing them. Automating the process of action recognition from visual data has been the topic of much research in the computer vision community. But what if it is too dark, or if the person is occluded or behind a wall? In this paper, we introduce a neural network model that can detect human actions through walls and occlusions, and in poor lighting conditions. Our model takes radio frequency (RF) signals as input, generates 3D human skeletons as an intermediate representation, and recognizes actions and interactions of multiple people over time. By translating the input to an intermediate skeleton-based representation, our model can learn from both vision-based and RF-based datasets, and allow the two tasks to help each other. We show that our model achieves comparable accuracy to vision-based action recognition systems in visible scenarios, yet continues to work accurately when people are not visible, hence addressing scenarios that are beyond the limit of today's vision-based action recognition.
arXiv.org
Making the Invisible Visible: Action Recognition Through Walls and...
Understanding people's actions and interactions typically depends on seeing them. Automating the process of action recognition from visual data has been the topic of much research in the computer...
Regina Barzilay: Deep Learning for Cancer Diagnosis and Treatment | Artificial Intelligence Podcast
🔗 Regina Barzilay: Deep Learning for Cancer Diagnosis and Treatment | Artificial Intelligence Podcast
Regina Barzilay is a professor at MIT and a world-class researcher in natural language processing and applications of deep learning to chemistry and oncology, or the use of deep learning for early diagnosis, prevention and treatment of cancer. She has also been recognized for her teaching of several successful AI-related courses at MIT, including the popular Introduction to Machine Learning course. This conversation is part of the Artificial Intelligence podcast. INFO: Podcast website: https://lexfridman.c
🔗 Regina Barzilay: Deep Learning for Cancer Diagnosis and Treatment | Artificial Intelligence Podcast
Regina Barzilay is a professor at MIT and a world-class researcher in natural language processing and applications of deep learning to chemistry and oncology, or the use of deep learning for early diagnosis, prevention and treatment of cancer. She has also been recognized for her teaching of several successful AI-related courses at MIT, including the popular Introduction to Machine Learning course. This conversation is part of the Artificial Intelligence podcast. INFO: Podcast website: https://lexfridman.c
YouTube
Regina Barzilay: Deep Learning for Cancer Diagnosis and Treatment | Lex Fridman Podcast #40
Continuous Probability Distributions for Machine Learning
https://machinelearningmastery.com/continuous-probability-distributions-for-machine-learning/
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Continuous Probability Distributions for Machine Learning
The probability for a continuous random variable can be summarized with a continuous probability distribution. Continuous probability distributions are encountered in machine learning, most notably in the distribution of numerical input and output variables for models and in the distribution of errors made by models. Knowledge of the normal continuous probability distribution is also required …
https://machinelearningmastery.com/continuous-probability-distributions-for-machine-learning/
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
🔗 Continuous Probability Distributions for Machine Learning
The probability for a continuous random variable can be summarized with a continuous probability distribution. Continuous probability distributions are encountered in machine learning, most notably in the distribution of numerical input and output variables for models and in the distribution of errors made by models. Knowledge of the normal continuous probability distribution is also required …
SANVis: Visual Analytics for Understanding Self-Attention Networks
Attention networks, a deep neural network architecture inspired by humans' attention mechanism, have seen significant success in image captioning, machine translation, and many other applications. Recently, they have been further evolved into an advanced approach called multi-head self-attention networks, which can encode a set of input vectors, e.g., word vectors in a sentence, into another set of vectors.
https://arxiv.org/abs/1909.09595
🔗 SANVis: Visual Analytics for Understanding Self-Attention Networks
Attention networks, a deep neural network architecture inspired by humans' attention mechanism, have seen significant success in image captioning, machine translation, and many other applications. Recently, they have been further evolved into an advanced approach called multi-head self-attention networks, which can encode a set of input vectors, e.g., word vectors in a sentence, into another set of vectors. Such encoding aims at simultaneously capturing diverse syntactic and semantic features within a set, each of which corresponds to a particular attention head, forming altogether multi-head attention. Meanwhile, the increased model complexity prevents users from easily understanding and manipulating the inner workings of models. To tackle the challenges, we present a visual analytics system called SANVis, which helps users understand the behaviors and the characteristics of multi-head self-attention networks. Using a state-of-the-art self-attention model called Transformer, we demonstrate usage scenario
Attention networks, a deep neural network architecture inspired by humans' attention mechanism, have seen significant success in image captioning, machine translation, and many other applications. Recently, they have been further evolved into an advanced approach called multi-head self-attention networks, which can encode a set of input vectors, e.g., word vectors in a sentence, into another set of vectors.
https://arxiv.org/abs/1909.09595
🔗 SANVis: Visual Analytics for Understanding Self-Attention Networks
Attention networks, a deep neural network architecture inspired by humans' attention mechanism, have seen significant success in image captioning, machine translation, and many other applications. Recently, they have been further evolved into an advanced approach called multi-head self-attention networks, which can encode a set of input vectors, e.g., word vectors in a sentence, into another set of vectors. Such encoding aims at simultaneously capturing diverse syntactic and semantic features within a set, each of which corresponds to a particular attention head, forming altogether multi-head attention. Meanwhile, the increased model complexity prevents users from easily understanding and manipulating the inner workings of models. To tackle the challenges, we present a visual analytics system called SANVis, which helps users understand the behaviors and the characteristics of multi-head self-attention networks. Using a state-of-the-art self-attention model called Transformer, we demonstrate usage scenario
Corporate IT Technologists Can Make Good Data Analysts
🔗 Corporate IT Technologists Can Make Good Data Analysts
There’s a myth in the Data Science community about that full-stack Data Scientist who is going to swoop in and magically transform your data science ventures into a profitable one overnight. Don’t…
🔗 Corporate IT Technologists Can Make Good Data Analysts
There’s a myth in the Data Science community about that full-stack Data Scientist who is going to swoop in and magically transform your data science ventures into a profitable one overnight. Don’t…
Medium
Corporate IT Technologists Can Make Good Data Analysts
Data Analysts are more important than ever for your Data Science Projects.
Adding Interpretability to Multiclass Text Classification models
🔗 Adding Interpretability to Multiclass Text Classification models
It is one of the basic tenets of learning for me where I try to distill any concept in a more palatable form. As Feynman said: So, when I saw the ELI5 library that aims to interpret machine learning…
🔗 Adding Interpretability to Multiclass Text Classification models
It is one of the basic tenets of learning for me where I try to distill any concept in a more palatable form. As Feynman said: So, when I saw the ELI5 library that aims to interpret machine learning…
Medium
Adding Interpretability to Multiclass Text Classification models
ELI5: Add explainability but not at a loss to accuracy
🎥 Jon Nordby - Audio Classification with Machine Learning
👁 1 раз ⏳ 2607 сек.
👁 1 раз ⏳ 2607 сек.
"Audio Classification with Machine Learning
[EuroPython 2019 - Talk - 2019-07-11 - Singapore [PyData track]
[Basel, CH]
By Jon Nordby
Sound is a rich source of information about the world around us.
Modern deep learning approaches can give human-like performance on a range of sound classifiction tasks.
This makes it possible to build systems that use sound to for example:
understand speech, to analyze music, to assist in medical diagnostics, detect quality problems in manufacturing, and to study the behavVk
Jon Nordby - Audio Classification with Machine Learning
"Audio Classification with Machine Learning
[EuroPython 2019 - Talk - 2019-07-11 - Singapore [PyData track]
[Basel, CH]
By Jon Nordby
Sound is a rich source of information about the world around us.
Modern deep learning approaches can give human-like performance…
[EuroPython 2019 - Talk - 2019-07-11 - Singapore [PyData track]
[Basel, CH]
By Jon Nordby
Sound is a rich source of information about the world around us.
Modern deep learning approaches can give human-like performance…
Creating a Custom TFX Executor
https://medium.com/tensorflow/creating-a-custom-tfx-executor-28edaa3604f6
The ExampleGen TFX Pipeline Component:
https://github.com/tensorflow/tfx/blob/master/docs/guide/examplegen.md#custom-examplegen
video:
https://www.youtube.com/playlist?list=PLQY2H8rRoyvxR15n04JiW0ezF5HQRs_8F
🔗 Creating a Custom TFX Executor
Posted by Kevin Haas, Zhitao Li, and Robert Crowe on behalf of the TFX team
https://medium.com/tensorflow/creating-a-custom-tfx-executor-28edaa3604f6
The ExampleGen TFX Pipeline Component:
https://github.com/tensorflow/tfx/blob/master/docs/guide/examplegen.md#custom-examplegen
video:
https://www.youtube.com/playlist?list=PLQY2H8rRoyvxR15n04JiW0ezF5HQRs_8F
🔗 Creating a Custom TFX Executor
Posted by Kevin Haas, Zhitao Li, and Robert Crowe on behalf of the TFX team
Medium
Creating a Custom TFX Executor
Posted by Kevin Haas, Zhitao Li, and Robert Crowe on behalf of the TFX team
Основы Ajax + PHP
Вступление
Обзор функций для работы с Ajax
Использование стандарстного вызова Ajax запроса
Использование событий
Передача данных в скрипт обработчик
Передача данных из скрипта обработчика
Вставляем новости в базу через Ajax
Выводим новости каждые 10 секунд
Заключение
#Ajax #PHP
#video
🎥 Вступление
👁 1 раз ⏳ 168 сек.
🎥 Обзор функций для работы с Ajax
👁 1 раз ⏳ 241 сек.
🎥 Использование стандарстного вызова Ajax запроса
👁 1 раз ⏳ 376 сек.
🎥 Использование событий
👁 1 раз ⏳ 348 сек.
🎥 Передача данных в скрипт обработчик
👁 1 раз ⏳ 1077 сек.
🎥 Untitled
👁 1 раз ⏳ 0 сек.
🎥 Untitled
👁 1 раз ⏳ 0 сек.
🎥 Untitled
👁 1 раз ⏳ 0 сек.
🎥 Untitled
👁 1 раз ⏳ 0 сек.
Вступление
Обзор функций для работы с Ajax
Использование стандарстного вызова Ajax запроса
Использование событий
Передача данных в скрипт обработчик
Передача данных из скрипта обработчика
Вставляем новости в базу через Ajax
Выводим новости каждые 10 секунд
Заключение
#Ajax #PHP
#video
🎥 Вступление
👁 1 раз ⏳ 168 сек.
Вступление в мини-курс🎥 Обзор функций для работы с Ajax
👁 1 раз ⏳ 241 сек.
Обзор функций для работы с Ajax-ом средставами jQuery🎥 Использование стандарстного вызова Ajax запроса
👁 1 раз ⏳ 376 сек.
Рассматриваем использование стандарстного вызова Ajax запроса🎥 Использование событий
👁 1 раз ⏳ 348 сек.
Рассматриваем использование событий🎥 Передача данных в скрипт обработчик
👁 1 раз ⏳ 1077 сек.
Рассматриваем пример того, как передачть данные в скрипт обработчик🎥 Untitled
👁 1 раз ⏳ 0 сек.
🎥 Untitled
👁 1 раз ⏳ 0 сек.
🎥 Untitled
👁 1 раз ⏳ 0 сек.
🎥 Untitled
👁 1 раз ⏳ 0 сек.
Vk
Вступление
Вступление в мини-курс
A Tool for Data Scientists Decision Makers and Journalists to Assess Fairness in ML Models
🔗 A Tool for Data Scientists Decision Makers and Journalists to Assess Fairness in ML Models
Classification models are often used to make decisions that affect humans: whether to approve a loan application, extend a job offer, or provide insurance. In such applications, individuals should have the ability to change the decision of the model. When a person is denied a loan by a credit scoring model, for example, they should be able know what changes to make to gain approval. Otherwise, this person will be denied the loan so long as the model is deployed, and -- more importantly -- will lack agency
🔗 A Tool for Data Scientists Decision Makers and Journalists to Assess Fairness in ML Models
Classification models are often used to make decisions that affect humans: whether to approve a loan application, extend a job offer, or provide insurance. In such applications, individuals should have the ability to change the decision of the model. When a person is denied a loan by a credit scoring model, for example, they should be able know what changes to make to gain approval. Otherwise, this person will be denied the loan so long as the model is deployed, and -- more importantly -- will lack agency
YouTube
A Tool for Data Scientists Decision Makers and Journalists to Assess Fairness in ML Models
Classification models are often used to make decisions that affect humans: whether to approve a loan application, extend a job offer, or provide insurance. I...
Из физиков в Data Science (Из двигателей науки в офисный планктон). Третья часть
Эта картинка, за авторством Артура Кузина (n01z3), достаточно точно суммирует содержание блог поста. Как следствие, дальнейшее повествование должно восприниматься скорее как пятничная история, нежели как что-то крайне полезное и техническое. Кроме того, стоит отметить, что текст насыщен английскими словами. Какие-то из них я не знаю как правильно перевести, а какие-то переводить просто не хочется.
Первая часть.
Вторая часть.
О том, как проходил переход из среды академической в среду индустриальную раскрыто в первых двух сериях. В этой же, разговор пойдет о том, что было дальше.
Шел январь 2017 года. На тот момент у меня было чуть больше года трудового стажа и работал я в Сан-Франциско в компании TrueAccord как Sr. Data Scientist.
TrueAccord — это стартап, который занимается сбором долгов. По-простому — коллекторское агентство. Обычно коллекторы много звонят. Мы же посылали много email'ов, а звонили мало. Каждый email вел на сайт компании, где должнику предлагалось сделать скидку на долг, да еще и позволить платить в рассрочку. Такой подход приводил к лучшей собираемости, позволял масштабироваться и меньше встревать на судебные иски.
🔗 Из физиков в Data Science (Из двигателей науки в офисный планктон). Третья часть
Эта картинка, за авторством Артура Кузина (n01z3), достаточно точно суммирует содержание блог поста. Как следствие, дальнейшее повествование должно воспринимать...
Эта картинка, за авторством Артура Кузина (n01z3), достаточно точно суммирует содержание блог поста. Как следствие, дальнейшее повествование должно восприниматься скорее как пятничная история, нежели как что-то крайне полезное и техническое. Кроме того, стоит отметить, что текст насыщен английскими словами. Какие-то из них я не знаю как правильно перевести, а какие-то переводить просто не хочется.
Первая часть.
Вторая часть.
О том, как проходил переход из среды академической в среду индустриальную раскрыто в первых двух сериях. В этой же, разговор пойдет о том, что было дальше.
Шел январь 2017 года. На тот момент у меня было чуть больше года трудового стажа и работал я в Сан-Франциско в компании TrueAccord как Sr. Data Scientist.
TrueAccord — это стартап, который занимается сбором долгов. По-простому — коллекторское агентство. Обычно коллекторы много звонят. Мы же посылали много email'ов, а звонили мало. Каждый email вел на сайт компании, где должнику предлагалось сделать скидку на долг, да еще и позволить платить в рассрочку. Такой подход приводил к лучшей собираемости, позволял масштабироваться и меньше встревать на судебные иски.
🔗 Из физиков в Data Science (Из двигателей науки в офисный планктон). Третья часть
Эта картинка, за авторством Артура Кузина (n01z3), достаточно точно суммирует содержание блог поста. Как следствие, дальнейшее повествование должно воспринимать...
Хабр
Из физиков в Data Science (Из двигателей науки в офисный планктон). Третья часть
Эта картинка, за авторством Артура Кузина (n01z3), достаточно точно суммирует содержание блог поста. Как следствие, дальнейшее повествование должно воспринимать...