Neural Networks | Нейронные сети
11.6K subscribers
803 photos
184 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Деплоим ML проект, используя Flask как REST API, и делаем доступным через приложение на Flutter

Введение

Машинное обучение уже везде и, пожалуй, почти невозможно найти софт, не использующий его прямо или косвенно. Давайте создадим небольшое приложение, способное загружать изображения на сервер для последующего распознавания с помощью ML. А после сделаем их доступными через мобильное приложение с текстовым поиском по содержимому.

Мы будем использовать Flask для нашего REST API, Flutter для мобильного приложения и Keras для машинного обучения. В качестве базы данных для хранения информации о содержимом изображений используем MongoDB, а для получения информации возьмём уже натренированную модель ResNet50. При необходимости мы сможем заменить модель, используя методы save_model() и load_model(), доступные в Keras. Последний потребует около 100 Мб при первоначальной загрузке модели. Почитать о других доступных моделях можно в документации.
Python,
Программирование
Машинное обучение
https://habr.com/ru/post/460995

🔗 Деплоим ML проект, используя Flask как REST API, и делаем доступным через приложение на Flutter
Введение Машинное обучение уже везде и, пожалуй, почти невозможно найти софт, не использующий его прямо или косвенно. Давайте создадим небольшое приложение, спо...
​Visual Text Correction — Can we detect and fix an inaccuracy in a video caption?
Videos, images, and sentences are mediums that can express the same semantics.

🔗 Visual Text Correction — Can we detect and fix an inaccuracy in a video caption?
Videos, images, and sentences are mediums that can express the same semantics. One can imagine a picture by reading a sentence or can…
​Network of Networks — A Neural-Symbolic Approach to Inverse-Graphics
One of the first ideas many people have once they get acquainted with deep learning and neural networks is, “what if we make a network
https://towardsdatascience.com/network-of-networks-a-neural-symbolic-approach-to-inverse-graphics-acf3998ab3d?source=collection_home---4------0-----------------------

🔗 Network of Networks — A Neural-Symbolic Approach to Inverse-Graphics
One of the first ideas many people have once they get acquainted with deep learning and neural networks is, “what if we make a network of…
Фейлы на соревнованиях по машинному обучению – Павел Плесков

🎥 Фейлы на соревнованиях по машинному обучению – Павел Плесков
👁 1 раз 1724 сек.
Секция Failconf – Pain stage, 11 мая 2019
Презентации с Data Fest 6 – https://drive.google.com/open?id=1LOmOoh1WLqmhSqTKjvdOQx-YOTyBgG-i
​Rekko Challenge 2019: как это было

Машинное обучение,
Искусственный интеллект

Не так давно на платформе Boosters прошел контест рекомендательных систем от онлайн-кинотеатра Okko — Rekko Challenge 2019. Для меня это был первый опыт участия в соревновании с лидербордом (ранее пробовал силы только в хакатоне). Задача интересная и знакома мне из практики, призовой фонд есть, а значит, был смысл участвовать. В итоге я занял 14 место, за что организаторы выдали памятную футболку. Приятно. Спасибо.

В этой статье я кратко погружу вас в задачу, расскажу о выдвинутых мной гипотезах, а также о том, как затащить соревнование по рекомендательным системам и попасть в топ-15 без опыта стекинга, что будет особенно полезно тем, кто только собирается участвовать в контестах.
https://habr.com/ru/company/surfstudio/blog/461055/

🔗 Rekko Challenge 2019: как это было
Не так давно на платформе Boosters прошел контест рекомендательных систем от онлайн-кинотеатра Okko — Rekko Challenge 2019. Для меня это был первый опыт участи...
#TensorFlow #TensorFlowTutorial
TensorFlow Full Course | Learn TensorFlow in 3 Hours | TensorFlow Tutorial For Beginners | Edureka

🎥 TensorFlow Full Course | Learn TensorFlow in 3 Hours | TensorFlow Tutorial For Beginners | Edureka
👁 1 раз 11501 сек.
** TensorFlow Training: https://www.edureka.co/ai-deep-learning-with-tensorflow **
This Edureka TensorFlow Full Course video is a complete guide to Deep Learning using TensorFlow. It covers in-depth knowledge about Deep Leaning, Tensorflow & Neural Networks. Below are the topics covered in this TensorFlow tutorial:

2:07 Artificial Intelligence
2:21 Why Artificial Intelligence?
5:27 What is Artificial Intelligence?
5:55 Artificial Intelligence Domains
6:14 Artificial Intelligence Subsets
11:17 Machine Learn
MixNet: Mixed Depthwise Convolutional Kernels

https://arxiv.org/abs/1907.09595

🔗 MixNet: Mixed Depthwise Convolutional Kernels
Depthwise convolution is becoming increasingly popular in modern efficient ConvNets, but its kernel size is often overlooked. In this paper, we systematically study the impact of different kernel sizes, and observe that combining the benefits of multiple kernel sizes can lead to better accuracy and efficiency. Based on this observation, we propose a new mixed depthwise convolution (MDConv), which naturally mixes up multiple kernel sizes in a single convolution. As a simple drop-in replacement of vanilla depthwise convolution, our MDConv improves the accuracy and efficiency for existing MobileNets on both ImageNet classification and COCO object detection. By integrating MDConv into AutoML search space, we have further developed a new family of models, named as MixNets, which significantly outperform previous models including MobileNetV2 [19] (ImageNet top-1 accuracy +4.2%), ShuffleNetV2 [15] (+3.5%), MnasNet [25] (+1.3%), ProxylessNAS [2] (+2.2%), and FBNet [26] (+2.0%). In particular, our MixNet-L achieves a
​Learning Better Simulation Methods for Partial Differential Equations

Наш телеграм канал - tglink.me/ai_machinelearning_big_data
http://ai.googleblog.com/2019/07/learning-better-simulation-methods-for.html

🔗 Learning Better Simulation Methods for Partial Differential Equations
Posted by Stephan Hoyer, Software Engineer, Google Research The world’s fastest supercomputers were designed for modeling physical pheno...
​Трагедия не приходит одна

В 2016 году уязвимость ImageTragick в библиотеке ImageMagick наделала много шума. Как способ снижения риска предлагалось использовать GraphicsMagick — форк библиотеки ImageMagick, нацеленный на более стабильный и производительный API. Оригинальная уязвимость CVE-2016-3717, обнаруженная stewie, позволяла злоумышленнику прочитать произвольный файл на файловой системе при помощи специально созданного изображения. Сегодня я рассмотрю аналогичную уязвимость в GraphicsMagick, обнаруженную мной в ходе анализа исходного кода библиотеки.
https://habr.com/ru/company/wrike/blog/458926/

🔗 Трагедия не приходит одна
В 2016 году уязвимость ImageTragick в библиотеке ImageMagick наделала много шума. Как способ снижения риска предлагалось использовать GraphicsMagick — форк библ...
​Neuralink платформа интегрированного интерфейса мозг-компьютер с тысячами каналов
#Искусственныйинтеллект

Примечание. 16 июля 2019г. Илон Маск презентовал технологию, которая стала одной из первых серьезных попыток введения нейроинтерфейсов в клиническую практику и имеющая реальные трансгуманистические цели в долгосрочной перспективе. Данная статья является переводом, с некоторыми примечаниями, оригинальной статьи (https://www.biorxiv.org/content/10.1101/703801v2.full) описывающей технологию нейрокомпьютерного интерфейса, ссылка на которую так же размещена на сайте компании разработчика Neuralink (https://www.neuralink.com/). Статья содержит описание особенностей и характеристик основных модулей лежащих в основе данной технологии, в том числе: гибких биосовместимых микроэлектродов, роботизированного нейрохирургического манипулятора для введения электродов в мозг, а так же специализированной микроэлектроники обеспечивающей прием усиление и оцифровку сигнала поступающего от нейронной активности.
https://habr.com/ru/post/461215/

🔗 Neuralink платформа интегрированного интерфейса мозг-компьютер с тысячами каналов
Примечание. 16 июля 2019г. Илон Маск презентовал технологию, которая стала одной из первых серьезных попыток введения нейроинтерфейсов в клиническую практику и...