ML trainings updates – Pavel Pleskov; Kaggle Google Landmark Recognition 2019 – Ivan Sosin
🔗 ML trainings updates – Pavel Pleskov; Kaggle Google Landmark Recognition 2019 – Ivan Sosin
Pavel Pleskov talks about updates on machine learning trainings. Ivan Sosin tells about his participation in Kaggle Google Landmark Recognition 2019 competition in which his teammates were Kirill Brodt and Pavel Pleskov. The team got a gold medal. In this video you will find out: - The competition overview - Dataset specifics - Details of the solution - Problems that were encountered Find out about new competitions http://mltrainings.ru/ Find out about new machine learning trainings: VKontakte https://vk
🔗 ML trainings updates – Pavel Pleskov; Kaggle Google Landmark Recognition 2019 – Ivan Sosin
Pavel Pleskov talks about updates on machine learning trainings. Ivan Sosin tells about his participation in Kaggle Google Landmark Recognition 2019 competition in which his teammates were Kirill Brodt and Pavel Pleskov. The team got a gold medal. In this video you will find out: - The competition overview - Dataset specifics - Details of the solution - Problems that were encountered Find out about new competitions http://mltrainings.ru/ Find out about new machine learning trainings: VKontakte https://vk
YouTube
ML trainings updates – Pavel Pleskov; Kaggle Google Landmark Recognition 2019 – Ivan Sosin
Pavel Pleskov talks about updates on machine learning trainings.
Ivan Sosin tells about his participation in Kaggle Google Landmark Recognition 2019 competition in which his teammates were Kirill Brodt and Pavel Pleskov. The team got a gold medal. In this…
Ivan Sosin tells about his participation in Kaggle Google Landmark Recognition 2019 competition in which his teammates were Kirill Brodt and Pavel Pleskov. The team got a gold medal. In this…
Org-scale analytics: Today’s startups build societies. Do it right.
Org-scale analytics uses data science to compare groups of groups, teams, and organizations.
https://towardsdatascience.com/org-scale-analytics-todays-startups-build-societies-do-it-right-4f6185e81482?source=collection_home---4------0-----------------------
🔗 Org-scale analytics: Today’s startups build societies. Do it right.
Org-scale analytics uses data science to compare groups of groups, teams, and organizations.
Org-scale analytics uses data science to compare groups of groups, teams, and organizations.
https://towardsdatascience.com/org-scale-analytics-todays-startups-build-societies-do-it-right-4f6185e81482?source=collection_home---4------0-----------------------
🔗 Org-scale analytics: Today’s startups build societies. Do it right.
Org-scale analytics uses data science to compare groups of groups, teams, and organizations.
Medium
Org-scale analytics: Today’s startups build societies. Do it right.
Org-scale analytics uses data science to compare groups of groups, teams, and organizations.
Built-in Machine Learning Algorithms with Amazon SageMaker - a Deep Dive
https://www.youtube.com/watch?v=yGc0qePSYig
🎥 Built-in Machine Learning Algorithms with Amazon SageMaker - a Deep Dive
👁 1 раз ⏳ 938 сек.
https://www.youtube.com/watch?v=yGc0qePSYig
🎥 Built-in Machine Learning Algorithms with Amazon SageMaker - a Deep Dive
👁 1 раз ⏳ 938 сек.
Learn more about Amazon SageMaker at – https://amzn.to/2ZjenDf
Amazon SageMaker comes built-in with a number of high-performance algorithms for different use cases. Learn the fundamentals and then dive deep into these algorithms.YouTube
Built-in Machine Learning Algorithms with Amazon SageMaker - a Deep Dive
Learn more about Amazon SageMaker at – https://amzn.to/2ZjenDf
Amazon SageMaker comes built-in with a number of high-performance algorithms for different use cases. Learn the fundamentals and then dive deep into these algorithms.
Amazon SageMaker comes built-in with a number of high-performance algorithms for different use cases. Learn the fundamentals and then dive deep into these algorithms.
The Evolution of Deeplab for Semantic Segmentation
In computer vision, a simple image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels)
https://towardsdatascience.com/the-evolution-of-deeplab-for-semantic-segmentation-95082b025571?source=collection_home---4------1-----------------------
🔗 The Evolution of Deeplab for Semantic Segmentation
In computer vision, a simple image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels)…
In computer vision, a simple image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels)
https://towardsdatascience.com/the-evolution-of-deeplab-for-semantic-segmentation-95082b025571?source=collection_home---4------1-----------------------
🔗 The Evolution of Deeplab for Semantic Segmentation
In computer vision, a simple image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels)…
Medium
The Evolution of Deeplab for Semantic Segmentation
In computer vision, a simple image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels)…
A ConvNet that works on like, 20 samples: Scatter Wavelets
The lesser known, non-neural, convolution network
🔗 A ConvNet that works on like, 20 samples: Scatter Wavelets
The lesser known, non-neural, convolution network
The lesser known, non-neural, convolution network
🔗 A ConvNet that works on like, 20 samples: Scatter Wavelets
The lesser known, non-neural, convolution network
Medium
A ConvNet that works on like, 20 samples: Scatter Wavelets
The lesser known, non-neural, convolution network
Reservoir Computing Models for Patient-Adaptable ECG Monitoring in arxiv.org/abs/1907.09504
🔗 Reservoir Computing Models for Patient-Adaptable ECG Monitoring in Wearable Devices
The reservoir computing paradigm is employed to classify heartbeat anomalies online based on electrocardiogram signals. Inspired by the principles of information processing in the brain, reservoir computing provides a framework to design, train, and analyze recurrent neural networks (RNNs) for processing time-dependent information. Due to its computational efficiency and the fact that training amounts to a simple linear regression, this supervised learning algorithm has been variously considered as a strategy to implement useful computations not only on digital computers but also on emerging unconventional hardware platforms such as neuromorphic microchips. Here, this biological-inspired learning framework is exploited to devise an accurate patient-adaptive model that has the potential to be integrated into wearable cardiac events monitoring devices. The proposed patient-customized model was trained and tested on ECG recordings selected from the MIT-BIH arrhythmia database. Restrictive inclusion criteria were
🔗 Reservoir Computing Models for Patient-Adaptable ECG Monitoring in Wearable Devices
The reservoir computing paradigm is employed to classify heartbeat anomalies online based on electrocardiogram signals. Inspired by the principles of information processing in the brain, reservoir computing provides a framework to design, train, and analyze recurrent neural networks (RNNs) for processing time-dependent information. Due to its computational efficiency and the fact that training amounts to a simple linear regression, this supervised learning algorithm has been variously considered as a strategy to implement useful computations not only on digital computers but also on emerging unconventional hardware platforms such as neuromorphic microchips. Here, this biological-inspired learning framework is exploited to devise an accurate patient-adaptive model that has the potential to be integrated into wearable cardiac events monitoring devices. The proposed patient-customized model was trained and tested on ECG recordings selected from the MIT-BIH arrhythmia database. Restrictive inclusion criteria were
arXiv.org
Reservoir Computing Models for Patient-Adaptable ECG Monitoring in...
The reservoir computing paradigm is employed to classify heartbeat anomalies
online based on electrocardiogram signals. Inspired by the principles of
information processing in the brain, reservoir...
online based on electrocardiogram signals. Inspired by the principles of
information processing in the brain, reservoir...
Predicting vs. Explaining
And Why Data Science Needs More “Half-Bayesians”
https://towardsdatascience.com/predicting-vs-explaining-69b516f90796?source=collection_home---4------0-----------------------
🔗 Predicting vs. Explaining
And Why Data Science Needs More “Half-Bayesians”
And Why Data Science Needs More “Half-Bayesians”
https://towardsdatascience.com/predicting-vs-explaining-69b516f90796?source=collection_home---4------0-----------------------
🔗 Predicting vs. Explaining
And Why Data Science Needs More “Half-Bayesians”
Medium
Predicting vs. Explaining
And Why Data Science Needs More “Half-Bayesians”
Image Captioning with Keras and TensorFlow (10.4)
🎥 Image Captioning with Keras and TensorFlow (10.4)
👁 1 раз ⏳ 1616 сек.
🎥 Image Captioning with Keras and TensorFlow (10.4)
👁 1 раз ⏳ 1616 сек.
Using multi-image recognition and natural language processing it is possible to create a neural network that can write captions for images. This video shows how to create and train an image captioning neural network for Keras. Transfer learning is used to greatly reduce training time. Makes use of glove and InceptionV3.
Code for This Video:
https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_10_4_captioning.ipynb
Course Homepage: https://sites.wustl.edu/jeffheaton/t81-558/
FVk
Image Captioning with Keras and TensorFlow (10.4)
Using multi-image recognition and natural language processing it is possible to create a neural network that can write captions for images. This video shows how to create and train an image captioning neural network for Keras. Transfer learning is used…
Как повысить безопасность с помощью больших данных от сбора до анализа с помощью машинного обучения
https://www.youtube.com/watch?v=yh3jQvmEoVQ
🎥 Как повысить безопасность с помощью больших данных от сбора до анализа с помощью машинного обучения
👁 1 раз ⏳ 2787 сек.
https://www.youtube.com/watch?v=yh3jQvmEoVQ
🎥 Как повысить безопасность с помощью больших данных от сбора до анализа с помощью машинного обучения
👁 1 раз ⏳ 2787 сек.
YouTube
Как повысить безопасность с помощью больших данных от сбора до анализа с помощью машинного обучения
Introducing TensorFlow Addons
https://medium.com/tensorflow/introducing-tensorflow-addons-6131a50a3dcf
🔗 Introducing TensorFlow Addons
Posted by: Sean Morgan (Two Six Labs), Yan Facai (Alibaba), Moritz Kröger (RWTH Aachen University), Tzu-Wei Sung (National Taiwan…
https://medium.com/tensorflow/introducing-tensorflow-addons-6131a50a3dcf
🔗 Introducing TensorFlow Addons
Posted by: Sean Morgan (Two Six Labs), Yan Facai (Alibaba), Moritz Kröger (RWTH Aachen University), Tzu-Wei Sung (National Taiwan…
Medium
Introducing TensorFlow Addons
Posted by: Sean Morgan (Two Six Labs), Yan Facai (Alibaba), Moritz Kröger (RWTH Aachen University), Tzu-Wei Sung (National Taiwan…
DL соревнования — гуси, пайплайны, кулстори – Артур Кузин
🔗 DL соревнования — гуси, пайплайны, кулстори – Артур Кузин
Артур Кузин рассказывает про переход и профессиональное развитие в Data Science. А также несколько кулстори и рекомендации начинающим дата сайентистам. Из видео вы сможете узнать: - С чего начать, если хочешь стать дата сайентистом - Зачем участвовать в соревнованиях и почему это весело - Про атрибуты хорошего пайплайна - Интересные кейсы из соревнований *Доклад с тренировки в 2018 году Узнать о текущих соревнованиях можно на сайте http://mltrainings.ru/ Узнать о новых тренировках и видео можно из групп:
🔗 DL соревнования — гуси, пайплайны, кулстори – Артур Кузин
Артур Кузин рассказывает про переход и профессиональное развитие в Data Science. А также несколько кулстори и рекомендации начинающим дата сайентистам. Из видео вы сможете узнать: - С чего начать, если хочешь стать дата сайентистом - Зачем участвовать в соревнованиях и почему это весело - Про атрибуты хорошего пайплайна - Интересные кейсы из соревнований *Доклад с тренировки в 2018 году Узнать о текущих соревнованиях можно на сайте http://mltrainings.ru/ Узнать о новых тренировках и видео можно из групп:
YouTube
DL соревнования — гуси, пайплайны, кулстори – Артур Кузин
Артур Кузин рассказывает про переход и профессиональное развитие в Data Science. А также несколько кулстори и рекомендации начинающим дата сайентистам. Из видео вы сможете узнать:
- С чего начать, если хочешь стать дата сайентистом
- Зачем участвовать в соревнованиях…
- С чего начать, если хочешь стать дата сайентистом
- Зачем участвовать в соревнованиях…
HUGE2: a Highly Untangled Generative-model Engine for Edge-computing
https://arxiv.org/abs/1907.11210
🔗 HUGE2: a Highly Untangled Generative-model Engine for Edge-computing
As a type of prominent studies in deep learning, generative models have been widely investigated in research recently. Two research branches of the deep learning models, the Generative Networks (GANs, VAE) and the Semantic Segmentation, rely highly on the upsampling operations, especially the transposed convolution and the dilated convolution. However, these two types of convolutions are intrinsically different from standard convolution regarding the insertion of zeros in input feature maps or in kernels respectively. This distinct nature severely degrades the performance of the existing deep learning engine or frameworks, such as Darknet, Tensorflow, and PyTorch, which are mainly developed for the standard convolution. Another trend in deep learning realm is to deploy the model onto edge/ embedded devices, in which the memory resource is scarce. In this work, we propose a Highly Untangled Generative-model Engine for Edge-computing or HUGE2 for accelerating these two special convolutions on the edge-computing
https://arxiv.org/abs/1907.11210
🔗 HUGE2: a Highly Untangled Generative-model Engine for Edge-computing
As a type of prominent studies in deep learning, generative models have been widely investigated in research recently. Two research branches of the deep learning models, the Generative Networks (GANs, VAE) and the Semantic Segmentation, rely highly on the upsampling operations, especially the transposed convolution and the dilated convolution. However, these two types of convolutions are intrinsically different from standard convolution regarding the insertion of zeros in input feature maps or in kernels respectively. This distinct nature severely degrades the performance of the existing deep learning engine or frameworks, such as Darknet, Tensorflow, and PyTorch, which are mainly developed for the standard convolution. Another trend in deep learning realm is to deploy the model onto edge/ embedded devices, in which the memory resource is scarce. In this work, we propose a Highly Untangled Generative-model Engine for Edge-computing or HUGE2 for accelerating these two special convolutions on the edge-computing
Artificial Intelligence with #Python | Artificial Intelligence Tutorial using Python | Edureka
https://www.youtube.com/watch?v=7O60HOZRLng
🎥 Artificial Intelligence with Python | Artificial Intelligence Tutorial using Python | Edureka
👁 1 раз ⏳ 6144 сек.
https://www.youtube.com/watch?v=7O60HOZRLng
🎥 Artificial Intelligence with Python | Artificial Intelligence Tutorial using Python | Edureka
👁 1 раз ⏳ 6144 сек.
* Machine Learning Engineer Masters Program: https://www.edureka.co/masters-program/machine-learning-engineer-training *
This Edureka video on "Artificial Intelligence With Python" will provide you with a comprehensive and detailed knowledge of Artificial Intelligence concepts with hands-on examples.
Python Course: https://www.youtube.com/watch?v=vaysJAMDaZw
Statistics and Probability Tutorial: https://www.youtube.com/watch?v=XcLO4f1i4Yo
Check out the entire Machine Learning Playlist: https://bit.ly/2NG9tYouTube
Artificial Intelligence with Python | Artificial Intelligence Tutorial using Python | Edureka
🔥 Post Graduate Diploma in Artificial Intelligence by E&ICT Academy
NIT Warangal: https://www.edureka.co/executive-programs/machine-learning-and-ai
This Edureka video on "Artificial Intelligence With Python" will provide you with a comprehensive and detailed…
NIT Warangal: https://www.edureka.co/executive-programs/machine-learning-and-ai
This Edureka video on "Artificial Intelligence With Python" will provide you with a comprehensive and detailed…
ML на службе threat hunter
🎥 ML на службе threat hunter
👁 1 раз ⏳ 2868 сек.
🎥 ML на службе threat hunter
👁 1 раз ⏳ 2868 сек.
Тема: Технический доклад
Спикеры: Алексей Тараненко
Рассказ о том, как машинное обучение помогает аналитику кибербезопасности и офицеру по расследованиям инцидентов в их повседневной работе. Докладчик поделится опытом использования ML в Microsoft. Покажет примеры расследований инцидентов ИБ с помощью Azure Notebook.Vk
ML на службе threat hunter
Тема: Технический доклад
Спикеры: Алексей Тараненко
Рассказ о том, как машинное обучение помогает аналитику кибербезопасности и офицеру по расследованиям инцидентов в их повседневной работе. Докладчик поделится опытом использования ML в Microsoft. Покажет…
Спикеры: Алексей Тараненко
Рассказ о том, как машинное обучение помогает аналитику кибербезопасности и офицеру по расследованиям инцидентов в их повседневной работе. Докладчик поделится опытом использования ML в Microsoft. Покажет…
Image Panorama Stitching with OpenCV
Image stitching is one of the most successful applications in Computer Vision.
https://towardsdatascience.com/image-panorama-stitching-with-opencv-2402bde6b46c?source=collection_home---4------0-----------------------
🔗 Image Panorama Stitching with OpenCV
Image stitching is one of the most successful applications in Computer Vision. Nowadays, it is hard to find a cell phone or an image…
Image stitching is one of the most successful applications in Computer Vision.
https://towardsdatascience.com/image-panorama-stitching-with-opencv-2402bde6b46c?source=collection_home---4------0-----------------------
🔗 Image Panorama Stitching with OpenCV
Image stitching is one of the most successful applications in Computer Vision. Nowadays, it is hard to find a cell phone or an image…
Medium
Image Panorama Stitching with OpenCV
Image stitching is one of the most successful applications in Computer Vision. Nowadays, it is hard to find a cell phone or an image…
Распознавание эмоций с помощью сверточной нейронной сети
Блог компании Voximplant,
Распознавание эмоций всегда было захватывающей задачей для ученых. В последнее время я работаю над экспериментальным SER-проектом (Speech Emotion Recognition), чтобы понять потенциал этой технологии – для этого я отобрал наиболее популярные репозитории на Github и сделал их основой моего проекта.
Прежде чем мы начнем разбираться в проекте, неплохо будет вспомнить, какие узкие места есть у SER.
Программирование,
Машинное обучение,
Искусственный интеллект,
https://habr.com/ru/company/Voximplant/blog/461435/
🔗 Распознавание эмоций с помощью сверточной нейронной сети
Распознавание эмоций всегда было захватывающей задачей для ученых. В последнее время я работаю над экспериментальным SER-проектом (Speech Emotion Recognition),...
Блог компании Voximplant,
Распознавание эмоций всегда было захватывающей задачей для ученых. В последнее время я работаю над экспериментальным SER-проектом (Speech Emotion Recognition), чтобы понять потенциал этой технологии – для этого я отобрал наиболее популярные репозитории на Github и сделал их основой моего проекта.
Прежде чем мы начнем разбираться в проекте, неплохо будет вспомнить, какие узкие места есть у SER.
Программирование,
Машинное обучение,
Искусственный интеллект,
https://habr.com/ru/company/Voximplant/blog/461435/
🔗 Распознавание эмоций с помощью сверточной нейронной сети
Распознавание эмоций всегда было захватывающей задачей для ученых. В последнее время я работаю над экспериментальным SER-проектом (Speech Emotion Recognition),...
Хабр
Распознавание эмоций с помощью сверточной нейронной сети
Распознавание эмоций всегда было захватывающей задачей для ученых. В последнее время я работаю над экспериментальным SER-проектом (Speech Emotion Recognition),...
Differentiable Programming — Inverse Graphics AutoEncoder
Let’s consider handwritten character recognition using MNIST (EMNIST).
https://towardsdatascience.com/differentiable-programming-inverse-graphics-autoencoder-e1b0fabe67bf?source=collection_home---4------3-----------------------
🔗 Differentiable Programming — Inverse Graphics AutoEncoder
Let’s consider handwritten character recognition using MNIST (EMNIST).
Let’s consider handwritten character recognition using MNIST (EMNIST).
https://towardsdatascience.com/differentiable-programming-inverse-graphics-autoencoder-e1b0fabe67bf?source=collection_home---4------3-----------------------
🔗 Differentiable Programming — Inverse Graphics AutoEncoder
Let’s consider handwritten character recognition using MNIST (EMNIST).
Medium
Differentiable Programming — Inverse Graphics AutoEncoder
Let’s consider handwritten character recognition using MNIST (EMNIST).
How to Communicate Clearly About Machine Learning.
Your choice of words matters.
https://towardsdatascience.com/how-to-communicate-clearly-about-machine-learning-8731e4d1cd4c?source=collection_home---4------1-----------------------
🔗 How to Communicate Clearly About Machine Learning.
Your choice of words matters.
Your choice of words matters.
https://towardsdatascience.com/how-to-communicate-clearly-about-machine-learning-8731e4d1cd4c?source=collection_home---4------1-----------------------
🔗 How to Communicate Clearly About Machine Learning.
Your choice of words matters.
Medium
How to Communicate Clearly About Machine Learning.
Your choice of words matters.
Predicting vs. Explaining
And Why Data Science Needs More “Half-Bayesians”
https://towardsdatascience.com/predicting-vs-explaining-69b516f90796?source=collection_home---4------0-----------------------
🔗 Predicting vs. Explaining
And Why Data Science Needs More “Half-Bayesians”
And Why Data Science Needs More “Half-Bayesians”
https://towardsdatascience.com/predicting-vs-explaining-69b516f90796?source=collection_home---4------0-----------------------
🔗 Predicting vs. Explaining
And Why Data Science Needs More “Half-Bayesians”
Medium
Predicting vs. Explaining
And Why Data Science Needs More “Half-Bayesians”
PyTorch Tutorial - Deep Learning Using PyTorch - Learn PyTorch from Basics to Advanced
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
https://www.youtube.com/watch?v=LeCZyHE5vlk
🎥 PyTorch Tutorial - Deep Learning Using PyTorch - Learn PyTorch from Basics to Advanced
👁 1 раз ⏳ 5602 сек.
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
https://www.youtube.com/watch?v=LeCZyHE5vlk
🎥 PyTorch Tutorial - Deep Learning Using PyTorch - Learn PyTorch from Basics to Advanced
👁 1 раз ⏳ 5602 сек.
Learn PyTorch from the very basics to advanced models like Generative Adverserial Networks and Image Captioning
A Complete Machine Learning Project Walk-Through in Python
☞ https://morioh.com/p/b56ae6b04ffc
Deep Learning With TensorFlow 2.0
☞ https://morioh.com/p/d669c3deea75
Introduction to PyTorch and Machine Learning
☞ https://morioh.com/p/296b2e812203
Machine Learning A-Z™: Hands-On Python & R In Data Science
☞ http://learnstartup.net/p/SJw1YoTMg
Deep Learning A-Z™: Hands-On Artificial Neural Networ