Neural Networks | Нейронные сети
11.6K subscribers
801 photos
182 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Ремастеринг «Звёздного пути» нейросетями до 1080p и 4K
В качестве небольшого любительского проекта я поэкспериментировал с нейросетями AI Gigapixel для апскейла одного из моих любимых научно-фантастических сериалов — Star Trek: Deep Space Nine (DS9), в русском переводе «Звёздный путь: Глубокий космос 9».

https://habr.com/ru/post/444642/

🔗 Ремастеринг «Звёздного пути» нейросетями до 1080p и 4K
В качестве небольшого любительского проекта я поэкспериментировал с нейросетями AI Gigapixel для апскейла одного из моих любимых научно-фантастических сериалов...
​Машинное ориентирование на дальних расстояниях при помощи автоматизированного обучения с подкреплением

Только в одних США живёт 3 миллиона человек с ограниченными возможностями передвижения, которые не могут покинуть свои дома. Вспомогательные роботы, способные автоматически ориентироваться на дальних расстояниях, могут сделать таких людей более независимыми, привозя им продукты, лекарства и посылки. Исследования показывают, что глубокое обучение с подкреплением (ОП) хорошо подходит для сопоставления сырых входных данных и действий, к примеру, для обучения захвату объектов или передвижению роботов, но обычно у ОП-агентов отсутствует понимание крупных физических пространств, необходимое для безопасного ориентирования на дальних расстояниях без помощи человека и адаптации к новому окружению.
https://habr.com/ru/post/444372/

🔗 Машинное ориентирование на дальних расстояниях при помощи автоматизированного обучения с подкреплени
Только в одних США живёт 3 миллиона человек с ограниченными возможностями передвижения, которые не могут покинуть свои дома. Вспомогательные роботы, способные ав...
​Neighbourhood Consensus Networks

https://arxiv.org/abs/1810.10510

🔗 Neighbourhood Consensus Networks
We address the problem of finding reliable dense correspondences between a pair of images. This is a challenging task due to strong appearance differences between the corresponding scene elements and ambiguities generated by repetitive patterns. The contributions of this work are threefold. First, inspired by the classic idea of disambiguating feature matches using semi-local constraints, we develop an end-to-end trainable convolutional neural network architecture that identifies sets of spatially consistent matches by analyzing neighbourhood consensus patterns in the 4D space of all possible correspondences between a pair of images without the need for a global geometric model. Second, we demonstrate that the model can be trained effectively from weak supervision in the form of matching and non-matching image pairs without the need for costly manual annotation of point to point correspondences. Third, we show the proposed neighbourhood consensus network can be applied to a range of matching tasks including b
🎥 Complete Machine Learning Course | Machine Learning Tutorial for Beginners | Edureka
👁 1 раз 7093 сек.
** Machine Learning Masters Program: https://www.edureka.co/masters-program/machine-learning-engineer-training **
***Topics Wise Machine Learning Podcast : https://castbox.fm/channel/id1832236?country=us ***
This Edureka Machine Learning video on "Complete Machine Learning Course" will provide you with detailed and comprehensive knowledge of Machine Learning. It will provide you with the in-depth knowledge of the different types of Machine Learning with the different algorithms that lie under each category
​Reducing the Need for Labeled Data in Generative Adversarial Networks

Наш телеграм канал - tglink.me/ai_machinelearning_big_data

http://ai.googleblog.com/2019/03/reducing-need-for-labeled-data-in.html

🔗 Reducing the Need for Labeled Data in Generative Adversarial Networks
Posted by Mario Lučić, Research Scientist and Marvin Ritter, Software Engineer, Google AI Zürich Generative adversarial networks (GANs)...
​Jetson Nano: одноплатник для машинного обучения от Nvidia
Вчера компания Nvidia анонсировала Jetson Nano: одноплатный компьютер для вычислений в области ИИ. Маленький компьютер с поддержкой библиотек CUDA-X AI выдаёт 472 гигафлопса для запуска современных рабочих нагрузок ИИ, потребляя при этом всего лишь 5 Вт.
https://habr.com/ru/post/444442/

🔗 Jetson Nano: одноплатник для машинного обучения от Nvidia
Вчера компания Nvidia анонсировала Jetson Nano: одноплатный компьютер для вычислений в области ИИ. Маленький компьютер с поддержкой библиотек CUDA-X AI выдаёт...
​Костя Горский, Intercom: про города и амбиции, продуктовое мышление, навыки для дизайнеров и саморазвитие
Алексей Иванов (автор, Ponchik.News) пообщался с Костей Горским, дизайн-менеджером в компании Intercom, бывшим дизайн-директором «Яндекса» и автором телеграм-канала «Дизайн и продуктивность». Это пятое интервью в серии интервью с топовыми специалистами в своих областях про продуктовый подход, предпринимательство, психологию и изменение поведения.

https://habr.com/ru/post/444640/

🔗 Костя Горский, Intercom: про города и амбиции, продуктовое мышление, навыки для дизайнеров и самораз
Алексей Иванов (автор, Ponchik.News) пообщался с Костей Горским, дизайн-менеджером в компании Intercom, бывшим дизайн-директором «Яндекса» и автором телеграм-ка...
🎥 Convolutional Neural Networks (CNNs) explained
👁 1 раз 517 сек.
CNNs for deep learning. Blog for this vid! http://deeplizard.com/learn/video/YRhxdVk_sIs

#21 in Machine Leaning / Deep Learning for Programmers Playlist
https://www.youtube.com/playlist?list=PLZbbT5o_s2xq7LwI2y8_QtvuXZedL6tQU

In this video, we explain the concept of convolutional neural networks, how they’re used, and how they work on a technical level. We also discuss the details behind convolutional layers and filters.

fast.ai lesson 4:
http://course.fast.ai/lessons/lesson4.html

Follow deeplizard on T
​Топ-7 Сценариев Использования Data Science в Финансах

https://habr.com/ru/company/otus/blog/444802/

🔗 Топ-7 Сценариев Использования Data Science в Финансах
Доброе утро! Сегодняшнюю публикацию мы хотим посвятить запуску курса «Data Scientist», который стартует уже 26 марта. Поехали! За последние годы наука о данных...
🎥 MIT 6.S191: Visualization for Machine Learning (Google Brain)
👁 1 раз 2260 сек.
MIT Introduction to Deep Learning 6.S191: Lecture 7
*New 2019 Edition*
Data Visualization for Machine Learning
Lecturer: Fernanda Viegas
Google Brain Guest Lecture
January 2019


For all lectures, slides and lab materials: http://introtodeeplearning.com
🎥 MIT 6.S191 (2018): Computer Vision Meets Social Networks
👁 1 раз 2038 сек.
MIT Introduction to Deep Learning 6.S191: Lecture 11
Computer Vision Meets Social Networks
Lecturer: Lin Ma; Tencent AI Lab
January 2018

Lecture 1 - Introduction to Deep Learning: https://www.youtube.com/watch?v=JN6H4rQvwgY
Lecture 2 - Deep Sequence Modeling: https://www.youtube.com/watch?v=CznICCPa63Q
Lecture 3 - Deep Computer Vision: https://www.youtube.com/watch?v=NVH8EYPHi30
Lecture 4 - Deep Generative Models: https://www.youtube.com/watch?v=JVb54xhEw6Y
Lecture 5 - Deep Reinforcement Learning: https://
Уменьшение зависимости от размеченных данных у генеративно-состязательных сетей

Генеративно-состязательные сети (ГСС) [Generative Adversarial Networks, GAN] – обладающий интересными возможностями класс глубоких генеративных моделей. Их основная идея – обучение двух нейросетей, генератора, который обучается синтезу данных (к примеру, изображений), и дискриминатора, обучающегося тому, как отличать реальные данных от тех, что синтезировал генератор. Этот подход успешно использовался для высококачественного синтеза изображений, улучшения сжатия изображений, и прочего.
https://habr.com/ru/post/444768/
ML.NET 0.11 — Машинное обучение для .Net
Microsoft — один из самых важнейших игроков в индустрии разработки ПО. Последнее дополнение ML.NET прибавляет ценность всей системе. Основная цель — внедрить и разработать собственный Искусственный Интеллект для модели и получить наиболее подходящую настройку при создании приложений.

В общем, машинное обучение ML.NET предназначено для использования и создания общих задач, которые включают регрессию, классификацию, рекомендации, ранжирование, кластеризацию и обнаружение аномалии. Не только это, но и дополнительная поддержка экосистемы с открытым исходным кодом делает ее популярной благодаря интеграции инфраструктуры с глубоким изучением. Одна из компаний сейчас работает над совместимостью всей системы с вариантами использования, которые работают с различными сценариями, такими как прогноз продаж, классификация изображений, анализ настроений и т. д.
https://habr.com/ru/post/444846/

🔗 ML.NET 0.11 — Машинное обучение для .Net
Microsoft — один из самых важнейших игроков в индустрии разработки ПО. Последнее дополнение ML.NET прибавляет ценность всей системе. Основная цель — внедрить и...