Neural Networks | Нейронные сети
11.6K subscribers
801 photos
182 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
Stanford CS230: Deep Learning | Autumn 2018 | Lecture 1 - Class Introduction and Logistics

Наш телеграм канал - tglink.me/ai_machinelearning_big_data

https://www.youtube.com/watch?v=PySo_6S4ZAg

🎥 Stanford CS230: Deep Learning | Autumn 2018 | Lecture 1 - Class Introduction and Logistics
👁 1 раз 4072 сек.
Andrew Ng, Adjunct Professor & Kian Katanforoosh, Lecturer - Stanford University
http://onlinehub.stanford.edu/

Andrew Ng
Adjunct Professor, Computer Science

Kian Katanforoosh
Lecturer, Computer Science

To follow along with the course schedule and syllabus, visit:
http://cs230.stanford.edu/

To get the latest news on Stanford’s upcoming professional programs in Artificial Intelligence, visit: http://learn.stanford.edu/AI.html

To view all online courses and programs offered by Stanford, visit: http:
​Новый алгоритм в 200 раз ускоряет автоматическое проектирование нейросетей
Исследователи из Массачусетского технологического института разработали эффективный алгоритм для автоматического дизайна высокопроизводительных нейросетей для конкретного аппаратного обеспечения, пишет издание MIT News.

Алгоритмы для автоматического проектирования систем машинного обучения — новая область исследований в сфере ИИ. Такая техника называется «поиск нейронной архитектуры (neural architecture search, NAS) и считается трудной вычислительной задачей.
https://habr.com/ru/post/444920/

🔗 Новый алгоритм в 200 раз ускоряет автоматическое проектирование нейросетей
ProxylessNAS напрямую оптимизирует архитектуры нейронных сетей для конкретной задачи и оборудования, что позволяет значительно увеличить производительность по...
🎥 MIT AI: Revolutionary Ideas in Science, Math, and Society (Eric Weinstein)
👁 18 раз 4916 сек.
Eric Weinstein is a mathematician, economist, physicist, and managing director of Thiel Capital. He formed the "intellectual dark web" which is a loosely assembled group of public intellectuals including Sam Harris, Jordan Peterson, Steven Pinker, Joe Rogan, Michael Shermer, and a few others. Follow Eric on Twitter: https://twitter.com/EricRWeinstein and look out for a podcast that he may be starting soon.

This conversation is part of the Artificial Intelligence podcast at MIT and beyond. Audio podcast ver
https://arxiv.org/abs/1903.00450

🔗 Multi-Object Representation Learning with Iterative Variational Inference
Human perception is structured around objects which form the basis for our higher-level cognition and impressive systematic generalization abilities. Yet most work on representation learning focuses on feature learning without even considering multiple objects, or treats segmentation as an (often supervised) preprocessing step. Instead, we argue for the importance of learning to segment and represent objects jointly. We demonstrate that, starting from the simple assumption that a scene is composed of multiple entities, it is possible to learn to segment images into interpretable objects with disentangled representations. Our method learns -- without supervision -- to inpaint occluded parts, and extrapolates to scenes with more objects and to unseen objects with novel feature combinations. We also show that, due to the use of iterative variational inference, our system is able to learn multi-modal posteriors for ambiguous inputs and extends naturally to sequences.
🎥 Machine Learning инженер в США | Что и где учить по машинному обучению
👁 83 раз 1137 сек.
Михаил Ольховский – Machine Learning инженер в Postmates –  в этом видео рассказал о своем пути в программирование и поделился полезными онлайн ресурсами по изучению машинного обучение. Приятного просмотра!

Спасибо за просмотр и лайк!

Не забудьте подписаться на канал, чтобы не пропустить новые выпуски.

Запись на личную консультацию – pb@progblog.tv
-визовые вопросы,
-способы поиски работы в США,
-прохождение собеседований,
-составление резюме,
-заполнение LinkedIn-профиля,
-учеба в США по специальност