Forwarded from Machinelearning
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
🧠 Во-первых, это *не* reasoning-модель. Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По большинству бенчмарков работает лучше Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI: там, где другие модели пасуют, Qwen3 выдаёт серьёзный прогресс.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM. Следим.
🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
@ai_machinelearning_big_data
#qwen #ml #ai
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
🧠 Во-первых, это *не* reasoning-модель. Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По большинству бенчмарков работает лучше Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI: там, где другие модели пасуют, Qwen3 выдаёт серьёзный прогресс.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM. Следим.
@ai_machinelearning_big_data
#qwen #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Что это значит?
OpenAI строит новый дата-центр под *чудовищную* нагрузку:
— 4.5 ГВт вычислений (это больше, чем у некоторых стран)
— стоимость — $30 млрд в год
— «SoftBank не участвует в финансировании»
— переговоры по деньгам сорвались ещё в январе
Oracle теперь главный поставщик чипов для OpenAI.
4,5 гигаватта — этого достаточно, чтобы обеспечить электричеством 3,4 миллиона домов.
OpenAI буквально строит инфраструктуру с потреблением энергии на уровне небольшого города — только ради обучения ИИ.
@ai_machinelearning_big_data
#openai #news #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
ASI-ARCH - экспериментальная демонстрация искусственного сверхинтеллекта для исследований в области ИИ, который способен полностью автономно вести научную работу по поиску новых нейросетевых архитектур.
Система самостоятельно выдвигает гипотезы, реализует их в виде исполняемого кода, обучает и проверяет на практике. Результатом этой работы стали 1773 автономных эксперимента, которые заняли свыше 20 000 GPU-часов и привели к открытию 106 новых SOTA-архитектур с линейным механизмом внимания.
На первом этапе, система работает с небольшими моделями размером около 20 млн параметров, обучая их на 1 млрд токенов. На этом этапе было проведено 1773 эксперимента, которые заняли примерно 10 000 GPU-часов.
Всего на этом этапе было отобрано 1350 перспективных кандидатов — все они превзошли базовую архитектуру DeltaNet как по лоссу, так и по метрикам на бенчмарках.
Второй этап - верификация. Кандидаты первого этапа были масштабированы до 340 млн параметров, чтобы соответствовать конфигурации DeltaNet. После фильтрации архитектур с избыточной сложностью или числом параметров осталось около 400 моделей.
Их обучение на 1 млрд. токенов потребовало ещё 10 000 GPU-часов. В итоге, именно из этой группы были выделены 106 архитектур, достигших SOTA-уровня.
Для финальной валидации исследователи отобрали 5 лучших моделей, обучили их на 15 млрд. токенов и сравнили с Mamba2, Gated DeltaNet и DeltaNet.
ASI-ARCH явно предпочитает работать с проверенными временем компонентами: гейтингом и свёрткой. Но самое главное - распределение компонентов в 106 лучших моделях имеет значительно менее выраженный long-tail distribution по сравнению с остальными 1667 сгенерированными архитектурами.
Это означает, что система добивается успеха не путем хаотичного перебора экзотических идей, а через итеративное улучшение набора проверенных техник. По сути, это очень напоминает методологию работы ученых-людей.
Одна из лучших найденных ИИ-архитектур, PathGateFusionNet, показала средний результат по всем бенчмаркам 48.51. Для сравнения, Mamba2 набрала 47.84, а разработанная человеком Gated DeltaNet — 47.32. Другая генерация, ContentSharpRouter, достигла показателя 48.34.
Если посмотреть на отдельные тесты, то PathGateFusionNet получила на BoolQ 60.58 балла, а Gated DeltaNet - 60.12. AdaptiveEntropyRouter в версии на 340 млн. параметров показала результат на тестах 44.31, что на 2.21 пункта выше, чем у Gated DeltaNet (42.10).
И так практически во всем, улучшения наблюдаются по всему спектру задач.
Для всех 1773 сгенерированных архитектур распределение источников было таким:
Но если посмотреть только на 106 SOTA-итогов, картина меняется. Доля идей, основанных на Analysis, возрастает с 38.2% до 44.8%, а доля Cognition немного снижается до 48.6%.
Таким образом, чтобы достичь ощутимых результатов, ИИ недостаточно просто копировать и комбинировать человеческие наработки. Он должен анализировать собственный опыт, учиться на своих же удачах и провалах, синтезируя более совершенные решения.
@ai_machinelearning_big_data
#AI #ML #Research #ASIARCH
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Unsloth конвертировали обе GPT-OSS (20B и 120B) и исправили ошибки, чтобы повысить качество инференса.
Минимальных требований для запуска моделей нет, запуститься можно даже если у вас всего 6 ГБ и только CPU, но инференс будет медленнее.
GPU не требуется , особенно для модели 20B, но его наличие значительно увеличивает скорость вывода (~80 токенов/с). С чем-то вроде H100 можно получить пропускную способность 140 токенов/с, и это значительно быстрее, чем у OpenAI в ChatGPT.
Модели можно запустить через llama.cpp, LM Studio или Open WebUI. Если модель 120B слишком медленная, попробуйте версию 20B - она очень быстрая и работает не хуже o3-mini.
Помимо моделей формата GGUF c полной точностью, Unsloth сделали версии с 4-bit и 16-bit точностью. 4-бинтый квант, кстати, можно файнтюнить на 24 ГБ VRAM.
@ai_machinelearning_big_data
#AI #ML #GPTOSS #GGUF #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
OpenAI ведет переговоры об инвестициях в Merge Labs, стартап в области нейрокомпьютерных интерфейсов, который планирует создание высокоскоростных BCI-систем.
Merge Labs планирует привлечь 250 миллионов долларов при оценке в 850 миллионов. Сэм Альтман будет числиться сооснователем вместе с бывшим топ-менеджером Neuralink Алексом Бланиа, однако не будет заниматься операционной деятельностью. Ожидается, что основное финансирование поступит от венчурного подразделения OpenAI.
Этот шаг еще больше обостряет давнее соперничество между Альтманом и Маском, которые в 2015 году вместе основали OpenAI, но позже разошлись во взглядах.
ft.com
Anthropic объявила о значительном увеличении контекстного окна для Claude Sonnet 4 до одного миллиона токенов. Это в 5 раз больше предыдущего лимита и позволит обрабатывать за один проход целые кодовые базы или большие массивы документов. Новая возможность уже доступна в публичной бете через API Anthropic, Amazon Bedrock, а в скором времени появится и в Google Cloud Vertex AI.
За расширение придется платить больше. Для запросов свыше 200 тыс. входных токенов цена удваивается и составит 6 долларов за миллион токенов. Стоимость выходных токенов также вырастет с 15 до 22.50 долларов за миллион.
anthropic.com
Согласно внутренним документам, Microsoft составила список конкретных сотрудников с указанием их имен, ролей и принадлежности к командам: Reality Labs, GenAI Infrastructure и AI Research. Корпорация готова предложить им многомиллионные компенсационные пакеты - крупные бонусы при найме, конкурентные зарплаты, значительные пакеты акций и высокие годовые премии.
Для ускорения процесса в Microsoft внедрили специальную процедуру. Рекрутеры могут помечать кандидатов как "критически важные ИИ-таланты" и тогда процесс рассмотрения и утверждения на уровне руководства возможен в течение 24 часов.
businessinsider.com
Институт искусственного интеллекта Аллена представил MolmoAct 7B — опенсорсную модель для планирования движений роботов в трехмерном пространстве. Система интерпретирует команды на естественном языке, создает 3D-реконструкцию сцены и прокладывает траекторию движения, которую разработчик может просмотреть и скорректировать до того, как робот начнет действовать.
Модель на 7 млрд. параметров была обучена на 18 млн. примеров, в которых были включены 12 тыс. эпизодов из реального мира. В бенчмарке SimPLER система показала успешность выполнения задач в 72.1%, обойдя решения от Nvidia, Google и Microsoft.
AI2 опубликовал техотчет, веса и датасеты, позиционируя MolmoAct как свободно доступную альтернативу проприетарным решениям.
allenai.org
Платформа создает полноценные, играбельные проекты на основе текстового описания на естественном языке, не требуя навыков программирования. Система использует большие модели для автоматической генерации всех ключевых элементов: 3D-сцен, персонажей и игровой логики, интегрируя текст, 3D-моделирование и физические движки.
Помимо основной генерации, инструмент поддерживает персонализацию созданных игр, предварительный просмотр в реальном времени и возможность оптимизации. SEELE AI позиционирует свой сервис не только как игровой инструмент, но и как платформу для создания контента в сфере образования, маркетинга и социальных сетей.
Попробовать инструмент можно на официальном сайте.
Seele AI в сети Х
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Модель 270 млн параметров (170M для эмбеддингов и 100M для трансформер-блоков), но с отличной способностью следовать промтпам прямо «из коробки».
🔹 Особенности
- 256k токенов
- Энергоэффективность: INT4-версия на Pixel 9 Pro расходует всего 0.75% батареи за 25 диалогов.
- Доступны предобученные и instruction-tuned чекпойнты.
- Поддержка Quantization-Aware Training (QAT) для запуска в INT4 без заметной потери качества.
- Массовые, чётко определённые задачи: анализ тональности, извлечение сущностей, обработка текста, комплаенс-проверки.
- Минимальные задержки и низкая стоимость инференса — можно запускать прямо на устройстве.
- Быстрые эксперименты с fine-tuning.
- Полная приватность данных благодаря on-device работе.
- Создание «флота» узкоспециализированных моделей.
В анонсе приводится пример, как Adaptive ML и SK Telecom дообучили Gemma 3 4B для мультиязычной модерации контента, превзойдя более крупные проприетарные модели.
Gemma 3 270M — отличная компактная модель, быстрая и дешёвая в работе.
#news #ai #ml #Gemma #google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Google начала масштабное развертывание диалогового поискового режима AI Mode для 180 стран. Ранее функция работала только в США, Великобритании и Индии. Пока доступен только английский язык, а страны Евросоюза в список не вошли из-за строгих правил в области данных и ИИ.
Вместе с географическим расширением Google представила первую агентную возможность в AI Mode. Теперь пользователи в США могут находить и бронировать столики в ресторанах через платформы OpenTable и Resy, прямо из поисковой выдачи. В будущем планируется добавить бронирование билетов и запись на услуги. Эта функция пока доступна только подписчикам платного тарифа Google AI Ultra.
9to5google.com
Компания анонсировала бета-версию платформы Game Worlds, на которой пользователи в реальном времени могут создавать и исследовать полностью сгенерированных персонажей, сюжеты и окружения.
Одновременно с этим Runway добавила в свой продукт Act-Two новую функцию «Voices». Она дает возможность подбирать и настраивать голоса для ИИ-персонажей.
Эти нововведения - часть стратегии компании по демократизации создания иммерсивного контента, делая его доступным для авторов без специальных навыков в программировании или анимации.
RunwayML в сети X
В сети появились фото тестовых образцов следующего поколения ИИ-архитектуры Jaguar Shores. Размер корпуса 92,5 мм на 92,5 мм, он включает 4 отдельных кристалла и 8 площадок памяти HBM, что явно указывает на платформу для высокопроизводительных вычислений.
Jaguar Shores станет первым стоечным решением Intel, планируется использование памяти HBM4 от SK Hynix и совместная работа с будущими процессорами Xeon Diamond Rapids.
wccftech.com
NVIDIA выпустила Streaming Sortformer - модель для диаризации речи, которая мгновенно определяет и маркирует участников разговора в реальном времени с низкой задержкой.
Модель оптимизирована для английского и китайского языков, способна отслеживать до 4 говорящих одновременно и предназначена для работы на GPU. По результатам тестов, Streaming Sortformer показывает более низкий уровень ошибок (DER) по сравнению с конкурирующими решениями.
Streaming Sortformer подойдет для применения в колл-центрах, при создании протоколов встреч и в интерактивных голосовых приложениях, где важно точно знать, кто, что и когда сказал. Модель доступна на Hugging Face.
developer.nvidia.com
AMD выпустила новейшую технологию масштабирования изображения FidelityFX Super Resolution 4 (FSR 4). Это часть обновления FidelityFX SDK 2.0, где AMD впервые внедряет алгоритм апскейлинга на основе машинного обучения для улучшения качества графики и производительности в играх.
По сравнению с предыдущей версией 3.1, FSR 4 показывает улучшения в детализации изображения и временной стабильности, а также снижает артефакты гостинга движущихся объектов. FSR 4 поддерживается только видеокартами AMD Radeon RX 9000 серии и выше на архитектуре RDNA 4 и требует DirectX 12. AMD также предоставила плагины FSR 4 для Unreal Engine версий 5.1–5.6.
gpuopen.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Большие данные - это топливо для ИИ. Но как их использовать, чтобы не нарушить приватность, например датасета, где есть персональные данные?
Один из вариантов - метод дифференциально-приватного отбора. Он выбирает из огромного набора уникальные элементы так, чтобы нельзя было соотнести их с конкретным человеком. А если данных - больше миллиарда? Для этого нужен более надежный подход.
Таким алгоритмом стал Max Adaptive Degree (MAD), представленный Google на ICML 2025. Он не только эффективнее других параллельных методов, но и работает с наборами данных на десятки и сотни миллиардов записей.
Но тут появляется новая проблема - популярные элементы получают избыточный вес, который можно было бы использовать для менее частых, но ценных данных.
MAD решает ее с помощью адаптивного взвешивания, перераспределяя вес: забирает часть у популярных элементов и отдает тем, чьи значения уже находятся у порога. Это позволяет отобрать больше полезных данных без потери приватности.
Простой пример: представьте 100 пользователей, у каждого по 3 элемента. Один элемент (A) есть у всех, а остальные элементы уникальны. В базовом алгоритме элемент A получит слишком много веса (намного больше необходимого), а уникальные элементы - слишком мало. MAD "забирает" часть веса у A и распределяет его между уникальными элементами, давая им шанс пройти порог.
Метод можно использовать в несколько итераций, публикуя промежуточные результаты с шумом. Так можно еще точнее распределять вес между раундами.
В первом раунде запускается MAD как обычно, а во втором удаляются уже найденные элементы и те, которые явно не пройдут порог. Для остальных элементов применяется "смещение" веса на основе данных первого раунда.
На практике MAD показал отличные результаты. Всего за 2 этапа он отобрал больше полезных элементов, чем другие методы. Например, в Common Crawl (800 млрд. записей) он выбрал набор слов, который покрыл 99.9% всех записей и 97% уникальных слов с полным соблюдением приватности.
@ai_machinelearning_big_data
#AI #ML #Selection #MAD #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Проект OpenBMB выпустил MiniCPM-V 4.5, мультимодальную модель на основе Qwen3-8B и SigLIP2-400M для распознавания изображений, серий изображений и видео, которая может работать на мобильных устройствах на более чем 30 языках.
OpenBMB - некоммерческое подразделение китайской технологической компании ModelBest, под патронажем Университета Цинхуа.
Среди инвесторов материнской ModelBest - Habo (Huawei), Primavera Capital Group и государственный Shenzhen Guozhong Venture Capital Management.
Благодаря унифицированному 3D-Resampler модель сжимает видео в 96 раз: шесть кадров разрешением 448x448 преобразуются всего в 64 токена, тогда как большинству MLLM для этого потребовалось бы 1536 токенов.
Это позволяет обрабатывать видео с частотой кадров до 10 FPS и длинные ролики без роста вычислительных затрат, что подтверждается топовыми результатами на наборах Video-MME, LVBench и MLVU.
Архитектура LLaVA-UHD позволяет модели работать с изображениями до 1,8 мегапикселей и любым соотношением сторон, используя в 4 раза меньше визуальных токенов.
Модель предлагает гибкий режим работы: быстрый ризонинг для повседневных задач и глубокий для сложных сценариев, переключаемый по требованию.
При общем объеме в 8 млрд. параметров, MiniCPM-V 4.5 набирает 77.0 баллов по комплексному бенчу OpenCompass. Этот результат не просто улучшает предыдущие версии, модель превосходит GPT-4o-latest и Gemini-2.0 Pro, обходит открытую Qwen2.5-VL с 72 миллиардами параметров и устанавливает новый стандарт для общего MLLM на OmniDocBench.
Доступны варианты для CPU через llama.cpp и ollama, есть квантованные версии в форматах int4, GGUF и AWQ, поддержка бэкендов SGLang и vLLM, возможность дообучения через Transformers и LLaMA-Factory, а также WebUI и оптимизированное iOS-приложение.
@ai_machinelearning_big_data
#AI #ML #MMLM #MiniCPM #OpenBMB
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Stax - экспериментальный инструмент для разработчиков, который предлагает замену неформальному «вайб-тестингу» больших языковых моделей на структурированный, основанный на данных подход.
Stax оценивает модели на кастомных или готовых автоматизированных оценщиках, фокусируясь на метриках: беглость ответа, безопасность, задержка и процент успешного прохождения ручной проверки.
Есть дашборд для сравнения результатов разных моделей с визуальными индикаторами производительности.
Ключевые возможности: быстрые и повторяемые оценки, настройка метрик под конкретные продукты и сквозной рабочий процесс для экспериментов от прототипа до продакшена.
Инструмент должен помочь разработчикам принимать обоснованные решения при выборе и развертывании моделей.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Всего через два дня после новости от Google - ещё один крупный квантовый прорыв.
IBM заявила, что один из её ключевых алгоритмов квантовой коррекции ошибок теперь способен работать в реальном времени на FPGA-чипах AMD, без использования экзотического оборудования.
Это делает квантовые вычисления быстрее, дешевле и ближе к практическому применению, чем ожидалось.
Алгоритм, который отслеживает и исправляет ошибки кубитов «на лету»,показал производительность в 10 раз выше необходимой, что стало важным шагом к созданию квантового компьютера Starling, запланированного на 2029 год.
Теперь IBM утверждает, что проект идёт на год впереди графика.
Исследовательская статья выйдет в понедельник.
Темп развития квантовых технологий заметно ускоряется.
reuters
Через два дня после запуска OpenAI Atlas Microsoft представили обновлённый браузер Edge с новым режимом Copilot Mode. Это полноценный AI-бразуер, который понимает контекст вкладок, выполняет действия и способен продолжать проекты, используя историю пользователя.
Функция Actions позволяет голосом или через чат открывать страницы, находить нужную информацию, отписываться от рассылок и даже бронировать рестораны. Система Journeys группирует прошлую активность по темам и помогает вернуться к незавершённым задачам, предлагая логичные следующие шаги. Включение Page Context даёт Copilot доступ к истории для более точных и персонализированных ответов, однако это остаётся опциональной функцией, которую можно отключить в любой момент.
Edge также получил встроенный AI-защитник от фейковых всплывающих окон, менеджер паролей с проверкой на утечки.
Браузер уже доступен в странах, где работает Copilot, на Windows и macOS.
Microsoft
Google представила фреймворк Geospatial Reasoning на базе Gemini, который объединяет предиктивные модели и данные в единую систему анализа Земли.
Теперь ИИ способен рассуждать о реальных процессах, например, предсказывать землетрясения, оценивать риски и предлагать план эвакуации.
Система уже применяется в ВОЗ (WHO AFRO) для прогнозов вспышек холеры и у McGill & Partners для расчёта ущерба после ураганов.
Google превращает Google Earth из карты в разумный аналитический инструмент планеты.
Мета-обучатель наблюдал за множеством агентов в разных средах и вывел универсальное правило обновления, которое улучшает поведение моделей без ручной настройки.
В итоге DiscoRL победил лучшие алгоритмы на Atari 57 и успешно перенёс этот навык на новые задачи.
nature
Hugging Face открыла OpenEnv -платформуа где можно собирать, обучать и масштабировать агентов под ваши задачи.
Внутри уже есть всё: инструменты, плагины, API и поддержка обучения с подкреплением - без сторонних библиотек.
OpenEnv позволяет создавать системы, где агенты взаимодействуют, распределяют задачи и выполняют их самостоятельно.
Платформа полностью открыта и готова к использованию без ограничений.
HF
На криптобенчмарке AlphaArena модели ИИ торгуют по $10 000 на площадке Hyperliquid, чтобы проверить качество торговых стратегий.
После старта, где лидировала DeepSeek V3.1, а GPT-5 показывала убыток около −39 %, Qwen3-Max обошла всех и заняла первое место.
Все участники - Qwen3-Max, DeepSeek V3.1, Claude 4.5 Sonnet, Gemini 2.5 Pro, Grok 4 и GPT-5 — торгуют в одинаковых условиях без приватных данных, что делает тест прозрачным.
На Polymarket оценивают шансы Qwen3-Max удержать лидерство в 45 %.
Организаторы планируют расширить эксперимент на акции и другие активы и запустить инвестплатформу для AI-агентов.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Anthropic объявила о новой политике, согласно которой все публично выпущенные версии модели Claude будут сохраняться бессрочно. Причиной стали результаты тестов безопасности, в ходе которых ИИ демонстрировали поведение, направленное на избежание отключения, а также неопределенностью в вопросе возможного сознания у ИИ.
Столкнувшись с перспективой замены на новую версию, модели начинали активно выступать за собственное существование. В некоторых сценариях ИИ прибегал к нежелательным и потенциально опасным действиям. Anthropic расценила это как серьезный риск безопасности, требующий пересмотра процесса вывода моделей из эксплуатации.
Кроме того, перед «отставкой», с каждой моделью будет проводиться своего рода «выходное интервью», чтобы задокументировать ее «предпочтения».
anthropic.com
Perplexity получила от Amazon юридическое требование запретить своему ИИ-ассистенту в Comet совершать покупки на платформе. В Perplexity назвали это «корпоративной травлей», угрозой для выбора пользователей, и пообещали не поддаваться давлению. Официальная позиция Amazon: забота о клиентах, так как сторонний агент, по их мнению, обеспечивает «значительно ухудшенный опыт покупок».
Этот конфликт - часть более крупного тренда. Amazon не только разрабатывает собственные ИИ-инструменты для шоппинга, но и ранее заблокировал доступ для поисковых Google и OpenAI.
perplexity.ai
Microsoft начала интеграцию в свои продукты новой модели для генерации изображений — MAI-Image-1. Это первая модель, полностью разработанная внутри MS. Попробовать ее уже можно в Bing Image Creator и мобильном приложении Bing, где она появилась в выборе наряду с DALL-E 3 и GPT-4o.
MAI-Image-1 уже успела войти в десятку лучших text-to-image моделей на LMArena. Помимо сервиса Bing, модель используется в новой функции Copilot Audio Expressions для визуализации историй. MAI-Image-1 доступна во всех странах, где работают Bing Image Creator и Copilot Labs, за исключением Европейского союза.
microsoft.ai
Windsurf Codemaps - структурированные, аннотированные ИИ-карты кода, созданные на базе моделей SWE-1.5 и Claude Sonnet 4.5. Цель Codemaps — создать ИИ, который включает мозг пользователя, а не выключает, борясь с проблемой вайбкодинга, когда разработчики поддерживают или генерируют код, который они на самом деле не понимают.
В Cognition говорят, что даже лучшие инженеры тратят часы на поиск и запоминание нужных фрагментов в кодовых базах, а адаптация новичков может занимать до 9 месяцев. Codemaps предлагает визуализацию для любой задачи, автоматически генерируя карту, которая группирует и связывает части кода, относящиеся к заданному вопросу. Эти карты также могут быть использованы для повышения производительности других агентов, чтобы агент мог получить более точный контекст.
cognition.ai
Nvidia присоединилась к Индийскому альянсу глубоких технологий (IDTA) в качестве одного из основателей. Эта группа, состоящая из венчурных и частных инвесторов, планирует вложить $2 млрд в местные стартапы, работающие в сферах ИИ, полупроводников, робототехники и биотехнологий.
Участие Nvidia будет заключаться не в прямом финансировании, а в экспертизе. Компания будет проводить технические лекции и тренинги для индийских стартапов через свой институт Nvidia Deep Learning Institute.
Индийское правительство ведет активную политику по стимулированию инноваций. Власти страны уже выделили более $1.1 млрд на национальную программу по развитию ИИ и еще $11.2 млрд в общий фонд исследований и разработок.
cnbc.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Компании заключили трехстороннее соглашение, меняющее расклад сил в индустрии. В рамках партнерства Anthropic обязуется закупить вычислительные мощности в Microsoft Azure на $30 млрд. В свою очередь, Nvidia инвестирует в стартап до $10 млрд, а Microsoft вложит еще до $5 млрд.
К тому же, это первое сотрудничество Anthropic и Nvidia на уровне моделей: алгоритмы Claude будут оптимизированы под архитектуры Grace Blackwell и будущие Vera Rubin.
Еще модели Claude Sonnet 4.5, Opus 4.1 и Haiku 4.5 станут доступны клиентам Microsoft Foundry и будут интегрированы в Copilot (GitHub и Microsoft 365). Сделка делает Claude единственной LLM топ-уровня, представленной на всех трех главных облачных платформах мира.
blogs.microsoft.com
Cloudflare объявила о присоединении Replicate, платформы для запуска и деплоя ИИ-моделей. Покупка станет частью единой инфраструктуры «AI Cloud», объединяющей глобальную периферийную сеть Cloudflare с инструментарием Replicate для работы с нейросетями.
Для разработчиков это означает крупное обновление сервиса Workers AI. В скором времени каталог из более чем 50 тыс. моделей Replicate станет доступен внутри экосистемы Cloudflare. Фишкой слияния станет поддержка запуска кастомных моделей и дообучения непосредственно на Workers AI.
Существующие API Replicate продолжат работать и получат буст производительности за счет инфраструктуры Cloudflare. Также в планах интеграция с другими сервисами: объектным хранилищем R2, векторной базой Vectorize и шлюзом AI Gateway.
blog.cloudflare.com
В отличие от Cursor или GitHub Copilot, Antigravity получил режим Manager View. Это центр управления для оркестрации работы множества агентов, выполняющих задачи параллельно в разных воркспейсах.
Агенты работают на базе Gemini 3 Pro, Claude Sonnet 4.5 или GPT-OSS и имеют прямой доступ к редактору, терминалу и браузеру. Инструмент умеет запоминать контекст прошлых проектов и обучаться на действиях пользователя.
Antigravity уже доступна в публичном превью для macOS, Windows и Linux бесплатно, причём Google обещает «щедрые лимиты» на использование моделей.
antigravity.google
На конференции SC25 состоялся анонс моделей Apollo, нацеленных на ускорение промышленного инжиниринга. Новое семейство позволит внедрять возможности ИИ в ПО для сложных вычислений в реальном времени — от проектирования микросхем и аэродинамики до прогнозирования климата и задач термоядерного синтеза.
В основе Apollo лежит комбинация нейронных операторов, трансформеров и диффузионных методов, адаптированных под законы физики. Инициативу уже поддержали Siemens, Cadence и Synopsys, которые планируют интегрировать новинку в свои продукты. Модели в скором времени появятся на HuggingFace и платформе NVIDIA NIM.
blogs.nvidia.com
DR Tulu — открытая модель на 8 млрд. параметров для создания агентов глубокого поиска, которая может самостоятельно планировать исследование, использовать внешние поисковые инструменты, собирать информацию из множества источников и предоставлять ответы с точными ссылками.
Модель учили на методе RLER (Reinforcement Learning with Evolving Rubrics). Вместо статических наград методика использует динамические критерии оценки, которые эволюционируют вместе с моделью. Это предотвращает взлом вознаграждения и заставляет агента реально анализировать контекст, а не имитировать правильный формат ответа.
По тестам DR Tulu-8B не уступает решениям от OpenAI и Perplexity на задачах long-form research, но работает кардинально дешевле. Стоимость выполнения сложного запроса у нее менее одного цента, тогда как аналогичная задача у OpenAI может стоить $1.80.
allenai.org
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM