SRPO — это онлайн-фреймворк обучения с подкреплением для моделей text-image, созданный как более эффективная альтернатива GRPO-подходам. Он делает генерацию стабильнее, быстрее и дешевле.
Как это работает:
- Direct-Align: оптимизация даже на самых «шумных» шагах, без сбоев и сэкономленной памятью.
- Promptable Rewards: награды превращаются в условные сигналы. Добавьте ключевые слова к промпту — и модель сразу усиливает реализм без дополнительного обучения.
- Эффективность: 75-кратный прирост производительности, результаты за 10 минут на 32 GPU (обгоняет DanceGRPO).
- Качество: повышенный уровень реализма и эстетики для FLUX.1-dev без новых данных.
- Надёжность: отсутствие reward hacking, работа с готовыми reward-моделями и устранение пересыщения изображений.
Подробнее:
@machinelearning_interview
#SRPO #DiffusionModels #AI #ReinforcementLearning #TextToImage
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9🔥8👍4🥱2
Результаты:
- Humanity’s Last Exam (HLE): 32.9% в академических задачах на рассуждение
- BrowseComp: 43.4% в сложных задачах веб-исследований
- Китайский вариант: 46.7%
- xbench-DeepSearch: 75% в пользовательских поисковых задачах
Это снижает затраты, повышает доступность и открывает новые сферы применения - от науки и права до навигации.
🔗 Homepage: https://tongyi-agent.github.io
🔗 Blog: https://tongyi-agent.github.io/blog/introducing-tongyi-deep-research/
🔗 Model HuggingFace: https://huggingface.co/Alibaba-NLP/Tongyi-DeepResearch-30B-A3B
🔗 Model ModelScope: https://modelscope.cn/models/iic/Tongyi-DeepResearch-30B-A3B
🔗 GitHub Repo: https://github.com/Alibaba-NLP/DeepResearch
#AI #DeepResearch #Tongyi #agents #syntheticdata
Please open Telegram to view this post
VIEW IN TELEGRAM
❤13👍4🔥3
Forwarded from Machinelearning
🚀 DeepSeek-V3.2-Exp - вышла новая экспериментальная версия
⚡ Главное:
- Основана на V3.1-Terminus
- Новый механизм Sparse Attention (DSA) → быстрее и дешевле работа с длинными контекстами
- Качество почти без потерь, производительность как у V3.1
- 💰 API подешевел более чем на 50%
📊 V3.1 пока ещё будет доступна до 15 октября 2025.
🔗 Hugging Face: https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp)
🔗 Tech Report: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf)
🔗Github: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf
@ai_machinelearning_big_data
#DeepSeek #AI #V32 #SparseAttention #LLM
⚡ Главное:
- Основана на V3.1-Terminus
- Новый механизм Sparse Attention (DSA) → быстрее и дешевле работа с длинными контекстами
- Качество почти без потерь, производительность как у V3.1
- 💰 API подешевел более чем на 50%
📊 V3.1 пока ещё будет доступна до 15 октября 2025.
🔗 Hugging Face: https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp)
🔗 Tech Report: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf)
🔗Github: https://github.com/deepseek-ai/DeepSeek-V3.2-Exp/blob/main/DeepSeek_V3_2.pdf
@ai_machinelearning_big_data
#DeepSeek #AI #V32 #SparseAttention #LLM
❤2👍2🤔2
⚡ Менять автоэнкодер в latent diffusion моделях проще, чем кажется.
🚀 DC-Gen — это новый фреймворк для ускорения диффузионных моделей после обучения.
Он переводит любую готовую модель в глубоко сжатое латентное пространство, снижая затраты и многократно ускоряя генерацию.
🔑 Основное
- Высокое разрешение без потерь качества
Версия DC-Gen-FLUX.1-Krea-12B выдаёт то же качество, что и оригинал, но работает в 53 раза быстрее на H100 при 4K.
С NVFP4 картинка 4K генерируется всего за 3.5 секунды на одной NVIDIA 5090 (20 шагов).
- 💸 Низкая стоимость адаптации
Перевод FLUX.1-Krea-12B в глубоко-сжатый автоэнкодер требует всего 40 GPU-дней на H100.
📄 Статья: https://arxiv.org/abs/2509.25180
💻 Код: https://github.com/dc-ai-projects/DC-Gen
🎨 Модели : https://huggingface.co/collections/dc-ai/dc-gen-6899bb095082244f396203e1
#diffusion #deeplearning #AI
🚀 DC-Gen — это новый фреймворк для ускорения диффузионных моделей после обучения.
Он переводит любую готовую модель в глубоко сжатое латентное пространство, снижая затраты и многократно ускоряя генерацию.
🔑 Основное
- Высокое разрешение без потерь качества
Версия DC-Gen-FLUX.1-Krea-12B выдаёт то же качество, что и оригинал, но работает в 53 раза быстрее на H100 при 4K.
С NVFP4 картинка 4K генерируется всего за 3.5 секунды на одной NVIDIA 5090 (20 шагов).
- 💸 Низкая стоимость адаптации
Перевод FLUX.1-Krea-12B в глубоко-сжатый автоэнкодер требует всего 40 GPU-дней на H100.
📄 Статья: https://arxiv.org/abs/2509.25180
💻 Код: https://github.com/dc-ai-projects/DC-Gen
🎨 Модели : https://huggingface.co/collections/dc-ai/dc-gen-6899bb095082244f396203e1
#diffusion #deeplearning #AI
🔥10❤3😁2🤝2🥰1
🎯 Новый вектор атак на ИИ — скрытые промпты в картинках
Trail of Bits показали, что хакеры могут прятать инструкции в изображениях. Пока картинка оригинального размера — всё чисто.
Но как только сервис (например, Gemini CLI или **Vertex AI Studio**) автоматически сжимает её, проявляется скрытый текст.
📌 Что это значит:
- ИИ «видит» спрятанный промпт и исполняет его, думая, что это команда пользователя.
- Так можно обойти фильтры и заставить модель делать то, что задумал атакующий.
🛠 Как защититься:
- Инструмент Anamorpher (open-source) для генерации и проверки таких атак.
- Защита: многоуровневая проверка картинок и отслеживание артефактов при масштабировании.
⚠️ Итог: даже безобидная картинка может оказаться «троянским конем» для ИИ-систем.
🔗Github: https://github.com/trailofbits/anamorpher
🔗 Подробнее: blog.trailofbits.com/2025/08/21/weaponizing-image-scaling-against-production-ai-systems/
#AI #Security #PromptInjection #TrailOfBits
Trail of Bits показали, что хакеры могут прятать инструкции в изображениях. Пока картинка оригинального размера — всё чисто.
Но как только сервис (например, Gemini CLI или **Vertex AI Studio**) автоматически сжимает её, проявляется скрытый текст.
📌 Что это значит:
- ИИ «видит» спрятанный промпт и исполняет его, думая, что это команда пользователя.
- Так можно обойти фильтры и заставить модель делать то, что задумал атакующий.
🛠 Как защититься:
- Инструмент Anamorpher (open-source) для генерации и проверки таких атак.
- Защита: многоуровневая проверка картинок и отслеживание артефактов при масштабировании.
⚠️ Итог: даже безобидная картинка может оказаться «троянским конем» для ИИ-систем.
🔗Github: https://github.com/trailofbits/anamorpher
🔗 Подробнее: blog.trailofbits.com/2025/08/21/weaponizing-image-scaling-against-production-ai-systems/
#AI #Security #PromptInjection #TrailOfBits
🔥22👍8❤5
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Она была преобразована из предварительно обученной авторегрессионной модели (Qwen3-30B-A3B) и затем дополнительно обучена на 500 миллиардах токенов, чтобы полностью поменять поведениие диффузионной модели.
Обычные модели (AR, автогрессионные) пишут текст слово за словом, а RND1 создаёт всё предложение сразу и потом пошагово уточняет его, как будто “проявляет” текст из шума.
Это - Diffusion Language Model (DLM), аналог диффузионных моделей, которые рисуют картинки, только здесь она “рисует” слова.
🔄 Как её сделали
Команда Radical Numerics придумала, как превратить готовую модель в диффузионную без обучения с нуля.
Они просто поменяли тип внимания и дообучили модель на новой задаче.
Этот метод называется AR-to-Diffusion Conversion (A2D) - то есть конверсия из автогрессионной модели в диффузионную.
Как это происходит:
1. Берут сильную GPT-подобную модель.
2. Меняют механизм внимания — теперь модель видит весь контекст сразу.
3. Продолжают обучение по диффузионной задаче.
4. Используют разные скорости обучения для разных частей сети, чтобы модель не забыла старое, но научилась новому способу мышления.
⚙️ Что под капотом
▪ Mixture-of-Experts (MoE) - у модели 30 млрд параметров, но реально работают только 3 млрд за раз. Это делает её мощной, но экономной.
▪ Непрерывное дообучение - старые знания не стираются, а “встраиваются” в новый режим.
▪ Огромные батчи - модель учится на больших партиях данных, чтобы стабилизировать обучение, ведь она не обрабатывает все токены сразу.
- Параллельная генерация - текст создаётся быстрее, без пошаговой задержки.
- Меньше затрат - активных параметров всего 3 млрд, при этом качество как у больших GPT.
- Новая архитектура - открывает дорогу гибридным моделям, сочетающим плюсы AR и DLM.
- Полностью открытый код и веса - можно исследовать, изменять, запускать самому.
- Первый серьёзный шаг к самосовершенствующемуся ИИ- модель может не только обучаться, но и помогать в проектировании следующей версии.
Это реально интересный метод, RND1 показывает, что ИИ можно не просто обучать, а перестраивать - менять его саму логику мышления без начала “с нуля”.
Похоже, это может стать фундаментом для систем Recursive Self-Improvement (RSI), когда ИИ способен создавать и улучшать самого себя.
@ai_machinelearning_big_data
#RND1 #RadicalNumerics #AI #DLM #DiffusionModel #MoE #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
❤15🔥6👍5🤝2
📢 Калифорния первой в США выпустила закон, обязывающий ИИ признавать, что они не люди
Штат принял закон SB 243 - первый в стране, регулирующий AI-чат-ботов-компаньонов.
Основные положения:
▪Если пользователь может подумать, что говорит с человеком, бот обязан показать уведомление, что он искусственный интеллект.
Компании должны иметь протокол предотвращения суицида: блокировать подобный контент и направлять пользователей на горячие линии помощи.
Этот протокол должен быть опубликован на сайте.
При общении с несовершеннолетними бот обязан напоминать каждые 3 часа, что это ИИ, и советовать сделать перерыв.
Запрещено выдавать себя за врача или иного специалиста в области здоровья.
Для подростков должен быть фильтр от сексуального контента.
С июля 2027 года операторы обязаны ежегодно отчитываться в Офисе по предотвращению самоубийств о своих действиях при выявлении риска.
Пользователи смогут подавать в суд на компании — минимум на $1 000 за каждое нарушение.
В тот же день подписаны сопутствующие меры:
Закон SB 53 (сентябрь 2025) — обязывает крупных разработчиков ИИ публиковать протоколы безопасности.
Новые правила о проверке возраста, предупреждениях на соцсетях и штрафах до $250 000 за дипфейк-порнографию.
Закон принят после громких случаев и исков, связанных с вредными взаимодействиями подростков с чат-ботами, включая CharacterAI и дело о гибели пользователя ChatGPT.
techcrunch
#ai #news
Штат принял закон SB 243 - первый в стране, регулирующий AI-чат-ботов-компаньонов.
Основные положения:
▪Если пользователь может подумать, что говорит с человеком, бот обязан показать уведомление, что он искусственный интеллект.
Компании должны иметь протокол предотвращения суицида: блокировать подобный контент и направлять пользователей на горячие линии помощи.
Этот протокол должен быть опубликован на сайте.
При общении с несовершеннолетними бот обязан напоминать каждые 3 часа, что это ИИ, и советовать сделать перерыв.
Запрещено выдавать себя за врача или иного специалиста в области здоровья.
Для подростков должен быть фильтр от сексуального контента.
С июля 2027 года операторы обязаны ежегодно отчитываться в Офисе по предотвращению самоубийств о своих действиях при выявлении риска.
Пользователи смогут подавать в суд на компании — минимум на $1 000 за каждое нарушение.
В тот же день подписаны сопутствующие меры:
Закон SB 53 (сентябрь 2025) — обязывает крупных разработчиков ИИ публиковать протоколы безопасности.
Новые правила о проверке возраста, предупреждениях на соцсетях и штрафах до $250 000 за дипфейк-порнографию.
Закон принят после громких случаев и исков, связанных с вредными взаимодействиями подростков с чат-ботами, включая CharacterAI и дело о гибели пользователя ChatGPT.
techcrunch
#ai #news
👍17🤣11❤5🥰3
Оксфордские учёные подтвердили худшие опасения: Интернет умирает
Исследователи из Оксфорда выяснили: интернет больше не тот, что раньше:
- В 2020 году ИИ создавал всего 5% контента,
- В 2025 - уже 48%, а к следующему году прогнозируют более 90%.
ИИ-текст стоит очень дешево, человеческий труд - от $10 до $100 за статью.
Рынок выбрал скорость и дешевизну.
Но настоящая проблема -**«model collapse»**:
когда нейросети обучаются на тексте, созданном другими нейросетями.
Это как ксерить ксерокопию - каждое поколение теряет детали и оригинальные идеи.
Мир превращается в поток однообразного, усреднённого контента.
ИИ сегодня создаёт “цифровую кашу”, а завтра будет учиться уже на ней. И каждый новый виток делает интернет чуть глупее.
#AI #Oxford #ModelCollapse #Internet #AIGeneratedContent #LLM #AIEthics #DigitalDecay
Исследователи из Оксфорда выяснили: интернет больше не тот, что раньше:
- В 2020 году ИИ создавал всего 5% контента,
- В 2025 - уже 48%, а к следующему году прогнозируют более 90%.
ИИ-текст стоит очень дешево, человеческий труд - от $10 до $100 за статью.
Рынок выбрал скорость и дешевизну.
Но настоящая проблема -**«model collapse»**:
когда нейросети обучаются на тексте, созданном другими нейросетями.
Это как ксерить ксерокопию - каждое поколение теряет детали и оригинальные идеи.
Мир превращается в поток однообразного, усреднённого контента.
ИИ сегодня создаёт “цифровую кашу”, а завтра будет учиться уже на ней. И каждый новый виток делает интернет чуть глупее.
#AI #Oxford #ModelCollapse #Internet #AIGeneratedContent #LLM #AIEthics #DigitalDecay
😢60👍8😁7🫡4❤2
🚀 Nvidia инвестирует до $1 млрд в Poolside - стартап, создающий инструменты автоматизации программирования. Раунд нацелен на $2 млрд при оценке $12 млрд.
Условия сделки:
- стартовый чек Nvidia - $500 млн, с ростом до $1 млрд при достижении целей по привлечению капитала;
- уже подтверждено более $1 млрд, ~**$700 млн** - от текущих инвесторов.
Что делает Poolside
- автоматизация разработки и генерирование кода;
- фокус на гос-сектор и оборону;
- долгосрочная цель — системы AGI.
Зачем деньги
- закупка кластеров Nvidia GB300 (Blackwell Ultra, 72 GPU + Grace CPU, оптимизировано под высокоскоростной инференс);
- масштабирование compute и R&D.
Контекст
- проект связан с Project Horizon - дата-центром на 2 ГВт в Техасе (CoreWeave), мощность которой сопоставима с энергией для 1.5 млн домов.
- Nvidia в 2025 уже проинвестировала 59+ AI-стартапов — растит спрос на свои чипы и усиливает позиции в AI-инфраструктуре.
Poolside получает доверие рынка и доступ к топовой вычислительной мощности. Nvidia укрепляет доминирование в AI-железе.
Автогенерация кода выходит из экспериментов в реальный продакшн-масштаб.
#Nvidia #AI #AGI #VC #DeepTech
bloomberg com/news/articles/2025-10-30/nvidia-to-invest-up-to-1-billion-in-ai-startup-poolside
Условия сделки:
- стартовый чек Nvidia - $500 млн, с ростом до $1 млрд при достижении целей по привлечению капитала;
- уже подтверждено более $1 млрд, ~**$700 млн** - от текущих инвесторов.
Что делает Poolside
- автоматизация разработки и генерирование кода;
- фокус на гос-сектор и оборону;
- долгосрочная цель — системы AGI.
Зачем деньги
- закупка кластеров Nvidia GB300 (Blackwell Ultra, 72 GPU + Grace CPU, оптимизировано под высокоскоростной инференс);
- масштабирование compute и R&D.
Контекст
- проект связан с Project Horizon - дата-центром на 2 ГВт в Техасе (CoreWeave), мощность которой сопоставима с энергией для 1.5 млн домов.
- Nvidia в 2025 уже проинвестировала 59+ AI-стартапов — растит спрос на свои чипы и усиливает позиции в AI-инфраструктуре.
Poolside получает доверие рынка и доступ к топовой вычислительной мощности. Nvidia укрепляет доминирование в AI-железе.
Автогенерация кода выходит из экспериментов в реальный продакшн-масштаб.
#Nvidia #AI #AGI #VC #DeepTech
bloomberg com/news/articles/2025-10-30/nvidia-to-invest-up-to-1-billion-in-ai-startup-poolside
🔥9❤4👍2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Без официального анонса стала доступна новая ИИ-модель Polaris Alpha с контекстным окном до 256 тыс. токенов. Она описывается как универсальный инструмент для генерации кода и выполнении инструкций. Модель была запущена для сбора обратной связи от пользователей.
В технических сообществах предполагают, что Polaris Alpha может быть тестовой версией GPT-5.1 от OpenAI. Эту гипотезу подкрепляют отзывы первых пользователей, отмечающих крайне низкий уровень галлюцинаций и стиль ответов, характерный для GPT. Сама Polaris Alpha на прямой вопрос о своей связи с GPT-4 отвечает утвердительно.
По результатам бенчмарка EQ-Bench, производительность модели сопоставима с Claude-3.5-Sonnet. Доступ к Polaris Alpha открыт бесплатно через веб-интерфейс и API на OpenRouter.
openrouter.ai
Мустафа Сулейман, CEO Microsoft AI, анонсировал новую стратегию, основанную на концепции «гуманистического сверхинтеллекта» (HSI). Для работы над этим направлением создается специальное подразделение - MAI Superintelligence Team.
В отличие от идеи AGI, подход Microsoft предполагает создание узкоспециализированных и контролируемых систем для решения конкретных проблем человечества. Стратегия отказывается от гонки за ASI в пользу разработки практических технологий.
Цели HSI — добиться прорывов в медицине, поиск чистой энергии и создание персонализированных ИИ-ассистентов, избегая рисков создания автономных и неконтролируемых систем. По словам Сулеймана, это должно гарантировать, что самые топовые версии ИИ будут создаваться строго в интересах людей.
microsoft.ai
Google представила первый стабильный релиз опенсорсной утилиты Magika с полностью переписанным с нуля на Rust движком. Новая версия способна сканировать сотни файлов в секунду на одном ядре процессора, используя ONNX Runtime для инференса и Tokio для асинхронной обработки.
Количество поддерживаемых типов файлов было удвоено и теперь превышает 200. Добавилась поддержка актуальных форматов для Data Science и ML (Jupyter, PyTorch, ONNX), современных языков программирования (Swift, Kotlin, TypeScript, Zig) и DevOps-инструментов (Dockerfile, TOML, HCL). Разработчикам доступны обновленные модули для Python и TypeScript, а также новый нативный клиент командной строки.
opensource.googleblog.com
Крупнейший в мире контрактный производитель электроники в течение 6 месяцев начнет использовать человекоподобных роботов на своем заводе в Техасе. Роботы будут задействованы в сборке серверов для ИИ-систем. По словам CEO Янг Лю, это первый подобный опыт за более чем 50-летнюю историю Foxconn.
Этот шаг является частью стратегии по агрессивному расширению производства в Северной Америке. Компания, являясь ключевым поставщиком Nvidia, считает Северную Америку своим главным хабом по выпуску ИИ-серверов на ближайшие 3 года. Решение о роботизации принято для повышения эффективности производства, которое, по словам Лю, критически важно в сфере ИИ.
asia.nikkei.com
Сумит Чинтала, один из создателей и ключевых руководителей проекта PyTorch, объявил о своем уходе. Его последний рабочий день в компании - 17 ноября. Чинтала, проработавший у Цукерберга 11 лет, возглавлял PyTorch с момента его создания. За это время фреймворк стал индустриальным стандартом, заняв, по оценкам, более 90% рынка ИИ-разработки.
Свой уход он объяснил желанием после долгого отпуска заняться чем-то новым. По его словам, PyTorch достиг зрелости и стабильности, а сильная команда готова продолжать его развитие. Сам Чинтала планирует остаться активным участником open-source сообщества.
Soumith Chintala в сети X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1🔥1