Forwarded from Machinelearning
Goodfire AI, вдохновившись примером Anthropic в интерпретации внутренних процессов Claude, воспроизвели методы трассировки цепей межслойных транскодеров (Cross-Layer Transcoders, CLT) на GPT-2 Small, чтобы проверить их способность раскрывать известные механизмы трансформеров.
Выбор на GPT-2 Small пал не случайно, эта модель небольшая и уже была ранее подвергнута ручному реверс-инжинирингу.
Cross-Layer Transcoders выжимают из модели разреженные признаки, которые объясняют работу MLP-слоев. Визуализируют это через графы атрибуции — это карты влияния признака на выход модели.
Натренировали на 100M токенов из FineWeb, получили ~590K признаков. Точность CLT-реплики модели составила 59%, что близко к оригинальным статьям. Тестировали на задаче сравнения чисел («больше, чем»), идеальном полигоне, где уже известны ключевые механизмы.
Задача "Больше, чем" (ориг. "greater-than") взята из статьи Michael Hanna, она заставляет предсказывать большие числа для второго года в диапазоне дат.
Промпт «The war lasted from the year 1711 to 17». CLT построил граф, где признаки с токена «11» (последняя цифра года) активнее всего влияли на предсказание.
Дальше, выделили топ-160 признаков, для каждого построили логит-атрибуции — теплокарты, показывающие, как признак влияет на выходные годы (ZZ) при разных входных (YY).
Похоже, CLT подсветил кучу узкоспециализированных «сравнивателей», а не универсальные нейроны, как в ручных исследованиях.
CLT автоматически находит интерпретируемые признаки, даже такие неочевидные, как абстрактная четность. Но их «разреженный» мир выглядит иначе, чем ручная трассировка цепей: тут больше узких признаков-«спецов» (Feature 461858 для диапазона 10–30) и меньше универсальных механизмов.
Возможно, дело в методе: CLT смотрит изолированные вклады фич, а в полной модели они взаимодействуют.
В общем, эксперименты с CLT показал, что под капотом языковых моделей не только четкие «сравниватели чисел», но и куча скрытых паттернов вроде детекторов контраста или любителей чисел, кратных 5. И да, полуавтономный анализ иногда видит то, что люди упускают.
@ai_machinelearning_big_data
#AI #ML #LLM #Research #CLT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8🔥4🥰1🤔1
Media is too big
VIEW IN TELEGRAM
OpenAI опубликовали исследование о причинах галлюцинации LLM.
Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.
Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.
Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.
В работе вводится понятие singleton rate — доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле.
Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.
Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты: 03-07, 15-06 и 01-01. Ни одна из них не была даже близка к правильной (осенью).
В другом тесте, где нужно было сосчитать количество букв D в слове DEEPSEEK, та же DeepSeek-V3 выдавала 2 или 3, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6 и 7.
При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний.
Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ я не знаю - 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.
Эту гипотезу подтвердили анализом популярных оценочных наборов.
В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата я не знаю. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.
OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.
Еще рекомендуют включают мониторинг singleton-rate на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю не штрафовались автоматически.
#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
❤17👍13🔥7
🚨 DeepSeek уже в первый день года выкатывает сильное обновление: важное улучшение архитектуры трансформеров.
Китайцы предложили способ сделать shortcut-путь ( это когда выход слоя прибавляется к его же входу, то есть сеть не «заменяет» информацию, а добавляет к ней улучшенную версию) в трансформерах гибче, но при этом сохранить стабильность даже у очень больших моделей.
В обычном трансформере каждый блок что-то считает, а потом просто добавляет результат к исходному сигналу.
Это помогает информации проходить через много слоёв, не теряясь.
Hyper-Connections меняют shortcut-путь.
Был один поток, а стало несколько.
То есть shortcut превращается из простого «input + output» в умный маршрутизатор сигналов.
Проблема в том, что без ограничений такие смешивания могут усиливать сигнал слишком сильно или, наоборот, гасить его и большие модели начинают вести себя нестабильно.
mHC решает это так:
потоки остаются, но каждое смешивание работает как аккуратное усреднение.
Сигнал не может «взорваться» или исчезнуть - он остаётся под контролем.
Что это даёт на практике:
- модели остаются стабильными даже на масштабе 27B, дают лучшее качество и не страдают от скачков лосса.
Там, где обычные Hyper-Connections раздували сигнал до 3000×, mHC держат его примерно на уровне 1.6×.
Если коротко: был один shortcut,. сделали несколько, но заставили их смешиваться безопасно.
И трансформеры стали гибче и стабильнее.
Статья: https://arxiv.org/abs/2512.24880
Видео: https://www.youtube.com/watch?v=gT-0Qryi5KA
#AI #DeepSeek #MachineLearning #NeuralNetworks #Research
Китайцы предложили способ сделать shortcut-путь ( это когда выход слоя прибавляется к его же входу, то есть сеть не «заменяет» информацию, а добавляет к ней улучшенную версию) в трансформерах гибче, но при этом сохранить стабильность даже у очень больших моделей.
В обычном трансформере каждый блок что-то считает, а потом просто добавляет результат к исходному сигналу.
Это помогает информации проходить через много слоёв, не теряясь.
Hyper-Connections меняют shortcut-путь.
Был один поток, а стало несколько.
Перед блоком модель выбирает, какие потоки подать на вычисления.
Во время блока часть сигнала идёт «в обход»,
чтобы ничего не потерять.
После блока всё снова аккуратно объединяется.
То есть shortcut превращается из простого «input + output» в умный маршрутизатор сигналов.
Проблема в том, что без ограничений такие смешивания могут усиливать сигнал слишком сильно или, наоборот, гасить его и большие модели начинают вести себя нестабильно.
mHC решает это так:
потоки остаются, но каждое смешивание работает как аккуратное усреднение.
Сигнал не может «взорваться» или исчезнуть - он остаётся под контролем.
Что это даёт на практике:
- модели остаются стабильными даже на масштабе 27B, дают лучшее качество и не страдают от скачков лосса.
Там, где обычные Hyper-Connections раздували сигнал до 3000×, mHC держат его примерно на уровне 1.6×.
Если коротко: был один shortcut,. сделали несколько, но заставили их смешиваться безопасно.
И трансформеры стали гибче и стабильнее.
Статья: https://arxiv.org/abs/2512.24880
Видео: https://www.youtube.com/watch?v=gT-0Qryi5KA
#AI #DeepSeek #MachineLearning #NeuralNetworks #Research
❤25🔥8👍4🤔1