Forwarded from Machinelearning
Все любят длинный контекст, но для GPU это больно - KV-кэш растет линейно и быстро сжирает VRAM. Например, для Llama-65B на 128k токенов кэш весит 335 ГБ. Существующие методы прунинга либо медленные, либо тупые и режут важное, либо требуют переобучения модели.
NVIDIA предложили метод KVzap, который решает, какие токены можно забыть, глядя только на текущие хидден-стэйты.
Поиск идеала (KVzip+).
Берется медленный, но точный метод KVzip: модели скармливают текст, заставляют его повторить, и смотрят, на какие прошлые токены она реально обращает внимание. Это золотой стандарт важности токена. Но в проде так делать нельзя, это двойная работа.
Аппроксимация (KVzap).
Тут и происходит вся суть: крошечная модель-суррогат смотрит на входящий хидден-стэйт токена и предсказывает, насколько этот токен будет важен в будущем, то есть пытается угадать скор KVzip.
Модели 2-х видов:
KVzap-Linear: простейшая линейная проекция (одна матрица). Она берет хиден-стэйт и тупо проецирует его в скалярный скор важности. Сложность: экстремально низкая (~0.02%).
KVzap-MLP: двухслойный перцептрон. Внутри есть скрытый слой размером 1/8 от размерности модели и нелинейная активация. Сложность: низкая, но выше линейной (~1.1%).
Токен залетает в слой трансформера, модель-суррогат быстро считает его скор важности. Если он ниже порога - токен в кэш не пишется или удаляется. Но при этом всегда оставляется скользящее окно из последних 128 токенов, чтобы не терять локальный контекст, иначе модель сыпется.
Проверяли на Qwen3-8B, Llama-3.1-8B и Qwen3-32B. Спойлер:
Удалось выкинуть до 75% KV-кэша, а это сжатие в 4 раза. На бенчмарках RULER (длинный контекст), LongBench и AIME25 падение метрик или нулевое, или меньше 1%. Оверхед от суррогатной модели мизерный - менее 1% FLOPs.
Это плохо, потому что стандартные ядра Paged Attention любят структуру. Чтобы реально получить ускорение, а не только экономию памяти, нужно писать кастомные CUDA-ядра, которые смогут эффективно жевать блоки переменной длины.
Метод умнее, чем Streaming LLM, и быстрее, чем полные методы разреженного внимания.
Ждем интеграции в vLLM или TRT-LLM, а пока, чтобы скрасить ожидание, NVIDIA собрала на HF интерактивный лидерборд популярных методик компрессии KV-кэша.
Код и веса моделей-суррогатов из тестов пейпера в открытом доступе, так что нет никаких ограничений, чтобы не покрутить KVzap на каком-нибудь тестовом сетапе.
@ai_machinelearning_big_data
#AI #ML #LLM #KVZAP #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤5🔥3