Forwarded from Олимпиадная геометрия
Finally... Завтра 8-го марта с 17-00 до 21-00 по московскому времени я буду решать задачи заочного тура олимпиады Шарыгина.
Ориентируясь на опыт прошлого года, я решил, что я буду прорешивать все задачи подряд, но отводя на задачу не более 10 минут: если идей к решению не возникает — переключаюсь на следующую... А потом вернусь к задачам, которые не получились и буду уже думать над ними более предметно.
Буду рад, если вы присоединитесь, но понимаю, что завтра у многих выходной и вам может быть не до этого...
https://www.youtube.com/live/FBqr6JQgltM?si=gXKh4NKXhGsDJary
Ориентируясь на опыт прошлого года, я решил, что я буду прорешивать все задачи подряд, но отводя на задачу не более 10 минут: если идей к решению не возникает — переключаюсь на следующую... А потом вернусь к задачам, которые не получились и буду уже думать над ними более предметно.
Буду рад, если вы присоединитесь, но понимаю, что завтра у многих выходной и вам может быть не до этого...
https://www.youtube.com/live/FBqr6JQgltM?si=gXKh4NKXhGsDJary
YouTube
#9str. Прорешиваем заочный тур олимпиады Шарыгина 2024
В этом стриме мы будем прорешивать задачи заочного тура олимпиады Шарыгина, который завершился на днях. Я буду делать это без предварительной подготовки в режиме онлайн.
На боковых сторонах AB и BC равнобедренного остроугольного треугольника берут такие точки M и K, что угол MEA равен углу ABC (E — пересечение CM и AK). Доказать, что середины всевозможных отрезков MK лежат на одной прямой.
// Такая задача М.Волчкевича предлагалась 8 классу на ММО сегодня. А если показалось слишком просто, то решите ту же задачу без условия равнобедренности треугольника ABC.
// Такая задача М.Волчкевича предлагалась 8 классу на ММО сегодня. А если показалось слишком просто, то решите ту же задачу без условия равнобедренности треугольника ABC.
Попробую сделать традицией выкладывать решения из чата в канал. Решение обобщение задачи выше.
Forwarded from Денис Егоров
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Непрерывное математическое образование
https://geometry.ru/olimp/2024/2024_zaoch_rus_sol.pdf
опубликованы решения заочного тура геометрической олимпиады им. Шарыгина
опубликованы решения заочного тура геометрической олимпиады им. Шарыгина
Forwarded from Kvantland | Квантландия | Интересные задачи и не только
А теперь вторая задача-картинка от авторов Квантландии (Е. Бакаев), которая совсем недавно была на базовом Турнире Городов:
Пять равносторонних треугольников расположены так, как показано на рисунке ниже. Три больших треугольника равны между собой, и два маленьких тоже равны между собой. Найдите углы треугольника ABC.
Пять равносторонних треугольников расположены так, как показано на рисунке ниже. Три больших треугольника равны между собой, и два маленьких тоже равны между собой. Найдите углы треугольника ABC.
На плоскости нарисовали несколько окружностей, после чего отметили все точки их пересечения или касания. Оказалось, что на каждой окружности лежит ровно n отмеченных точек и через каждую отмеченную точку проходит ровно n окружностей. Чему может быть равно n?
С днём Пи (14 марта, 3/14)!
https://youtu.be/d-o3eB9sfls?si=hJrUVLxXrgUiUfIu
https://youtu.be/d-o3eB9sfls?si=hJrUVLxXrgUiUfIu
YouTube
Why is pi here? And why is it squared? A geometric answer to the Basel problem
A most beautiful proof of the Basel problem, using light.
Help fund future projects: https://www.patreon.com/3blue1brown
An equally valuable form of support is to simply share some of the videos.
Special thanks to these supporters: http://3b1b.co/basel-thanks…
Help fund future projects: https://www.patreon.com/3blue1brown
An equally valuable form of support is to simply share some of the videos.
Special thanks to these supporters: http://3b1b.co/basel-thanks…
Когда я слушал лекции по теории чисел профессора Генри Кона (Henry Cohn), одного из ведущих математиков Microsoft, на своей лекции 22 июля, он заметил, что на самом деле 3/14=0.214..., а вот если мы хотим считать этот день днём числа пи, то надо пользоваться не американской, 3/14, а европейской нотацией: 3.14. Тогда это похоже на число пи. Если же мы настаиваем на косой черте, то днём числа пи должно быть 22 июля: 22/7 = 3.1428... — более точное приближение к числу пи, чем 3.14. Поэтому, по его мнению, настоящие математики должны бы отмечать день числа пи 22 июля.
Надо ли говорить, что день рождения профессора Кона был 22 июля?
Надо ли говорить, что день рождения профессора Кона был 22 июля?
Forwarded from Быстрые задачки по математике (Alexey Sgibnev)
Отрезок соединяет середину стороны треугольника с точкой другой стороны и равен половине третьей стороны. Верно ли, что это средняя линия?
Anonymous Quiz
46%
да
54%
нет
Forwarded from Georgiy Chelnokov
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Непрерывное математическое образование
https://mccme.ru/nir/seminar/
в четверг (21.03) на семинаре учителей Наталия Стрелкова будет рассказывать про то как и зачем шевелить геометрию
19:00, столовая МЦНМО
в четверг (21.03) на семинаре учителей Наталия Стрелкова будет рассказывать про то как и зачем шевелить геометрию
19:00, столовая МЦНМО
На боковых сторонах треугольника откладывают от основания равные отрезки и строят на них как на диаметрах окружности. Доказать, что общие хорды всех таких пар окружностей проходят через одну точку.
// источник: https://tttttt.me/geometry_ukraine/549
// источник: https://tttttt.me/geometry_ukraine/549
Придумайте или найдите как можно больше "понятных прямых", которые касаются параболы с фокусом F и директрисой AM. Если хотите находить с геогеброй.
На поверхности равногранного тетраэдра сидят два муравья. Докажите, что они могут встретиться, преодолев в сумме расстояние, не превосходящее диаметра окружности, описанной около грани тетраэдра.