Геометрия-канал
9.76K subscribers
1.05K photos
28 videos
110 files
845 links
Решаем задачи по геометрии каждый день.

Чат https://tttttt.me/joinchat/DxYaB0QLindiVZpW32-rfQ
Download Telegram
Можно ли сцепить концы у каждой из трех мишур так, чтобы получились три кольца, которые нельзя разцепить, но при разрезании любого из них они расцеплялись бы? А если мишур больше, чем три?
21
Вторая часть статьи про сопряжение Клауса Клоусона от Миши Сидоренко!
🔥162
Forwarded from sydor
Advanced_Clawson_Conjugates.pdf
1.4 MB
👍17👎51
Если синие дуги имеют равную градусную меру, то красные отрезки имеют равную длину.

P.S. на предыдущей картинке была ошибка, спасибо обратившим внимание!
👍166👀1
коллега П.Пушкарь задал вопрос, а я не смог сходу ответить — предлагаю решить как задачу

Есть три точки на плоскости, треугольник. Тогда единственным образом определяются радиусы шаров таких, что они касаются плоскости в выбранных точках и друг друга. Внутрь этих шаров и плоскости можно вписать ещё шар. Где он коснется плоскости?

Это должна быть какая-то замечательная точка треугольника — какая?
👍94
коллега Д.Прокопенко напоминает такое прикольное утверждение:

Если сфера, вписанная в треугольную призму, касается нижнего основания в некоторой точке P, то верхнего основания она будет касаться в изогонально сопряженной с ней точке.
🔥83
Кай находится в центре заколдованного круга с радиусом 100 метров. Каждую секунду он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Снежная королева имеет право заставить его сменить направление на противоположное (когда Кай находится внутри круга). Сможет ли Кай действовать так, чтобы выбраться из круга к Герде?

Со Старым Новым годом! 🎄
👍24😐53
Теорема Карно Штейнера.
Даны два треугольника ABC и A_1B_1C_1. Оказалось, что перпендикуляры из точек A_1,B_1,C_1 на прямые BC, AC, AB пересекаются в точке P. Докажите, что перпендикуляры из точек A, B, С на стороны B_1C_1, A_1C_1, A_1B_1 пересекаются в одной точке.
16👍2
Геометрия-канал
Теорема Карно Штейнера. Даны два треугольника ABC и A_1B_1C_1. Оказалось, что перпендикуляры из точек A_1,B_1,C_1 на прямые BC, AC, AB пересекаются в точке P. Докажите, что перпендикуляры из точек A, B, С на стороны B_1C_1, A_1C_1, A_1B_1 пересекаются в одной…
1. Дана бесконечно удаленная прямая и на ней некоторая проективная инволюция. Докажите, что после поворота на 90 градусов она останется проективной инволюцией.
2. Докажите прошлую задачу используя 1.
😍10👍76
Дополнение к картинке К. Малевича.

Докажите, что если черный четырехугольник - квадрат, E и F - середины его сторон, то красный треугольник - правильный.

P.S. Хорошая учебная задача, которая следует из совпадения двух замечательных точек (центра описанной окружности и точки пересечения медиан) в красном треугольнике. А бывает ли так, что какие-то две замечательные точки совпадают, а треугольник - неправильный?
8👍3🔥2😁2
Геометрия-канал
Очень крутая задача с секретом с MMO 2021(это не Московская олимпиада, а макет в стиле IMO). Предлагалась под номером 3. Картинку не рисую. Пусть ABC - неравнобедренный треугольник. Предположим, что окружность с центром на прямой BC, проходящая через A, окружность…
Давайте обсудим еще эту задачку)
1. Пусть дан шестиугольник ABCA_1B_1C_1 так, что никакие четыре точки не лежат на одной окружности, а прямые AA_1BB_1CC_1 пересекаются в одной точке. Что вы можете сказать про точки P такие, что окружности (APA_1), (BPB_1), (CPC_1) соосны.
2. Решите задачу используя 1.
10
Существуют ли в пространстве ломаные, которые имеют следующий вид сверху?
15👍3🔥3
Легко проверить, что если треугольник прямоугольный, то его полупериметр равен сумме диаметра описанной и радиуса вписанной окружностей. Попробуйте доказать геометрически обратное утверждение.
18
Разделить трапецию на рисунке а) на две подобных трапеции
б) на два подобных четырехугольника, не являющихся трапециями

Источник
👍83
Из четырех равных треугольников сложили выпуклый четырехугольник, у которого нет параллельных сторон. Какую форму могут иметь такие треугольники?
10
Задача Маркелова С.В. с Тургора

Дана коробка (прямоугольный параллелепипед), по поверхности (но не внутри) которой ползает муравей. Изначально муравей сидит в углу. Верно ли, что среди всех точек поверхности на наибольшем расстоянии от муравья находится противоположный угол? (Расстоянием между двумя точками считаем длину соединяющего их кратчайшего пути по поверхности параллелепипеда.)

P.S. Ответ в задаче неожиданный.
🔥16😢65👍3
Не самая простая задача на построение

Даны две касающихся внешним образом окружности. Провести прямую так, чтобы она пересекла большую в точках A,B и коснулась меньшей в такой точке С, для которой CB=BA.
👍105
Все белые четырехугольники - квадраты. Тогда для каждого цвета сумма площадей полосатых многоугольников равна сумме площадей клетчатых.
23👍5