Forwarded from Олимпиадная геометрия
Forwarded from Геометрия с Ниловым
Можно ли в плоскости прорезать тонкое отверстие, не разбивающее ее на части, через которое можно продеть каркас: a) куба; b) тетраэдра? (Ребра каркаса считаются сколь угодно тонкими)
Forwarded from Золотая задача
Первый и второй признаки равенства треугольников, 2-й шаг, когда треугольники не даны явно #7класс #геометрия #начинающим
Источник: учебник М.А.Волчкевича
Источник: учебник М.А.Волчкевича
Forwarded from Геометрия с Ниловым
Есть следующая простая (и хорошая) планиметрическая задача Микеля. На каждой стороне треугольника взята точка, отличная от вершин. Тогда три окружности, каждая из которых проходит через вершину треугольника и две точки, взятые на сторонах, выходящих из нее, пересекаются в одной точке.
Имеет место быть и такой трехмерный аналог. На каждом ребре тетраэдра взята точка, отличная от вершин. Тогда четыре сферы, каждая из которых проходит через вершину тетраэдра и три точки, взятые на ребрах, выходящих из нее, пересекаются в одной точке.
Имеет место быть и такой трехмерный аналог. На каждом ребре тетраэдра взята точка, отличная от вершин. Тогда четыре сферы, каждая из которых проходит через вершину тетраэдра и три точки, взятые на ребрах, выходящих из нее, пересекаются в одной точке.
Инверсия, но не тупая (1).pdf
313.3 KB
Листочек на инверсию. Наверное не сильно оригинальный.
Дан треугольник ABC из каждой вершины провели красную и синию прямые, которые симметричны относительно биссектрис соответствующих углов. Оказалось, что они образовали два не равных треугольника с общим ортоцентром. Докаите, что описанные окружности этих треугольников имеют общую точку на описанной окружности исходного.
Forwarded from Геометрия с Ниловым
Дан треугольник ABC. Пусть K -- точка касания вписанной окружности со стороной AC. Докажите, что окружности, касающиеся описанной окружности треугольника ABC, луча BK и продолжений AC за точки A и С, равны.
Forwarded from Геометрия с Ниловым
Каким минимальным числом непрозрачных попарно непересекающихся шаров можно загородить точечный источник света? А если все шары равны?
Forwarded from Непрерывное математическое образование
https://etudes.ru/etudes/Lobachevskian-geometry-Poincare-disk-model/
у Мат. Этюдов недавно появились разные картинки и разговоры на тему [модели Пуанкаре] плоскости Лобачевского
в частности, можно смотреть на разные замощения плоскости Лобаческого одинаковыми правильными многоугольниками
у Мат. Этюдов недавно появились разные картинки и разговоры на тему [модели Пуанкаре] плоскости Лобачевского
в частности, можно смотреть на разные замощения плоскости Лобаческого одинаковыми правильными многоугольниками