С днём Пи (14 марта, 3/14)!
https://youtu.be/d-o3eB9sfls?si=hJrUVLxXrgUiUfIu
https://youtu.be/d-o3eB9sfls?si=hJrUVLxXrgUiUfIu
YouTube
Why is pi here? And why is it squared? A geometric answer to the Basel problem
A most beautiful proof of the Basel problem, using light.
Help fund future projects: https://www.patreon.com/3blue1brown
An equally valuable form of support is to simply share some of the videos.
Special thanks to these supporters: http://3b1b.co/basel-thanks…
Help fund future projects: https://www.patreon.com/3blue1brown
An equally valuable form of support is to simply share some of the videos.
Special thanks to these supporters: http://3b1b.co/basel-thanks…
Когда я слушал лекции по теории чисел профессора Генри Кона (Henry Cohn), одного из ведущих математиков Microsoft, на своей лекции 22 июля, он заметил, что на самом деле 3/14=0.214..., а вот если мы хотим считать этот день днём числа пи, то надо пользоваться не американской, 3/14, а европейской нотацией: 3.14. Тогда это похоже на число пи. Если же мы настаиваем на косой черте, то днём числа пи должно быть 22 июля: 22/7 = 3.1428... — более точное приближение к числу пи, чем 3.14. Поэтому, по его мнению, настоящие математики должны бы отмечать день числа пи 22 июля.
Надо ли говорить, что день рождения профессора Кона был 22 июля?
Надо ли говорить, что день рождения профессора Кона был 22 июля?
Forwarded from Быстрые задачки по математике (Alexey Sgibnev)
Отрезок соединяет середину стороны треугольника с точкой другой стороны и равен половине третьей стороны. Верно ли, что это средняя линия?
Anonymous Quiz
46%
да
54%
нет
Forwarded from Georgiy Chelnokov
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Непрерывное математическое образование
https://mccme.ru/nir/seminar/
в четверг (21.03) на семинаре учителей Наталия Стрелкова будет рассказывать про то как и зачем шевелить геометрию
19:00, столовая МЦНМО
в четверг (21.03) на семинаре учителей Наталия Стрелкова будет рассказывать про то как и зачем шевелить геометрию
19:00, столовая МЦНМО
На боковых сторонах треугольника откладывают от основания равные отрезки и строят на них как на диаметрах окружности. Доказать, что общие хорды всех таких пар окружностей проходят через одну точку.
// источник: https://tttttt.me/geometry_ukraine/549
// источник: https://tttttt.me/geometry_ukraine/549
Придумайте или найдите как можно больше "понятных прямых", которые касаются параболы с фокусом F и директрисой AM. Если хотите находить с геогеброй.
На поверхности равногранного тетраэдра сидят два муравья. Докажите, что они могут встретиться, преодолев в сумме расстояние, не превосходящее диаметра окружности, описанной около грани тетраэдра.
Очень крутая, но малоизвестная теорема (Теорема Витасса). Дан вписанный четырёхугольник ABCD. Его диагонали AC и BD пересекаются в точке P. Тогда, прямые Эйлера треугольников APB,BPC,CPD,APD пересекаются в одной точке. (Также можно задуматься, когда они являются параллельными)
Forwarded from Кроссворд Тьюринга (Vanya Yakovlev)
Популярная лекция по геометрии с недавнего Матпраздника
📄 Пока у нас пропуск, хочу поделиться записью лекции «Кривизна и углы» Александра Гайфуллина. Она посвящена свойствам кривых и поверхностей, за которыми стоит очень важное в геометрии понятие кривизны. В лекции много красивых доказательств (например, классно доказана теорема Эйлера), ну и вообще она отличная и по содержанию, и по доступности.
🎙 Александр Гайфуллин — победитель Матпраздника, а теперь член-корр. РАН, сотрудник МИАН, профессор МГУ.
Please open Telegram to view this post
VIEW IN TELEGRAM
YouTube
А.А.Гайфуллин. Кривизна и углы
Лекция на XXXV Математическом празднике (18.02.2024)
Forwarded from Математические этюды
Необычная для «Математических этюдов» премьера: «Теорема о двух кругах» https://etudes.ru/etudes/two-circles-theorem/ . Теорема даёт явное построение касательных к циклоидам – траекториям, описываемым фиксированной точкой окружности, катящейся без проскальзывания по некоторой гладкой линии.
Во-первых, необычная, так как просто объяснение геометрической теоремы. Но настолько красивой, что заслуживает своей отдельной экранизации. Кроме того, теорема дополняет цикл по понятию «огибающая» – сюжеты
«Парабола: изонить» https://etudes.ru/models/parabola-string-art/ ,
«Эллипс, гипербола, парабола: складывание листа бумаги» https://etudes.ru/models/conic-sections-paper-folding/ ,
«Кардиоида и нефроида» https://etudes.ru/models/cardioid-nephroid/ ,
«Каустики: нефроида и кардиоида» https://etudes.ru/etudes/caustic-nephroid-cardioid/ .
Теорема о двух круга, применённая к эпициклоидам, завершает доказательство того, что в цилиндрической чашке видна каустика в виде нефроиды, а в конической, когда лучи света параллельны образующей, – кардиоида.
Ну и во-вторых, премьера открывает новый жанр на Этюдах – повествование с анимированными рисунками.
Во-первых, необычная, так как просто объяснение геометрической теоремы. Но настолько красивой, что заслуживает своей отдельной экранизации. Кроме того, теорема дополняет цикл по понятию «огибающая» – сюжеты
«Парабола: изонить» https://etudes.ru/models/parabola-string-art/ ,
«Эллипс, гипербола, парабола: складывание листа бумаги» https://etudes.ru/models/conic-sections-paper-folding/ ,
«Кардиоида и нефроида» https://etudes.ru/models/cardioid-nephroid/ ,
«Каустики: нефроида и кардиоида» https://etudes.ru/etudes/caustic-nephroid-cardioid/ .
Теорема о двух круга, применённая к эпициклоидам, завершает доказательство того, что в цилиндрической чашке видна каустика в виде нефроиды, а в конической, когда лучи света параллельны образующей, – кардиоида.
Ну и во-вторых, премьера открывает новый жанр на Этюдах – повествование с анимированными рисунками.
etudes.ru
Теорема о двух кругах / Этюды // Математические этюды
Теорема о двух кругах: явное построение касательных к циклоидам, эпициклоидам и гипоциклоидам.
Forwarded from Kvantland | Квантландия | Интересные задачи и не только
Давно у нас не было геометрии. И сегодня новая 40-градусная задачка из серии "Геометрия для всех"!
Вершины ломаной ABCD лежат на сторонах прямоугольника (см. рисунок). Все звенья ломаной равны, а два отмеченных на рисунке угла равны 40⁰. Чему равен угол CAD?
Вершины ломаной ABCD лежат на сторонах прямоугольника (см. рисунок). Все звенья ломаной равны, а два отмеченных на рисунке угла равны 40⁰. Чему равен угол CAD?
Геометрия-канал
На плоскости нарисовали несколько окружностей, после чего отметили все точки их пересечения или касания. Оказалось, что на каждой окружности лежит ровно n отмеченных точек и через каждую отмеченную точку проходит ровно n окружностей. Чему может быть равно…
Пример, когда n=4 (прямые - это окружности, проходящие через бесконечно удаленную точку)
Геометрия-канал
На плоскости нарисовали несколько окружностей, после чего отметили все точки их пересечения или касания. Оказалось, что на каждой окружности лежит ровно n отмеченных точек и через каждую отмеченную точку проходит ровно n окружностей. Чему может быть равно…
Пример, когда n=5 (прямые - это окружности, проходящие через бесконечно удаленную точку)