Forwarded from Малоизвестное интересное
Новый рейтинг научно-технической мощи государств в 2023.
Сокрушая стены технологических санкций, Китай почти догнал США
Как следует из нового совместного отчета IDC, IEIT Systems и Tsinghua Institute for Global Industry «The 2022-2023 Global Computing Index», за год Китай совершил, казалось бы, невозможное.
Наперекор жесточайшим технологическим санкциям США (по сути, это технологическая война), Китай:
• на 29% увеличил число стоек центров обработки данных в стране с 5,9 млн единиц до 7,6 млн
• на 31% увеличил вычислительную мощность страны с 150 Эксафлопс до 197 (1 Эксафлопс равет 10^18 (квинтилион) флопсов – операций с плавающей запятой в сек)
• на 45% увеличил вычислительную мощность страны, задействованную на развитие ИИ (сейчас это 25% общей вычислительной мощности страны)
• на 23% увеличил объем системы хранения данных с 878 Эксабайт до 1080 (1 Эксабайт равен 10^18 (квинтилион) байтов)
Эти немыслимые показатели роста позволили Китаю вплотную приблизиться к абсолютному мировому лидеру по научно-технической мощи государств – США.
По итогам 2022:
✔️ Масштаб только одной вычислительной отрасли Китая составил ¥1,8 трлн (юаней) - $247 млрд
N.B. в 2025 планируется ¥4,4 трлн (юаней) - $613 млрд
✔️ Масштаб вычислительных ресурсов всех отраслей экономики страны составил ¥9,8 трлн (юаней) - $1,4 трлн (для сравнения – весь ВВП России в 2023 составит около $2,4 трлн)
N.B. в 2025 планируется ¥24 трлн (юаней) - $3,34 трлн
✔️ Каждый юань, потраченный на увеличение вычислительной мощности, увеличивает валовой внутренний продукт Китая на 3–4 юаня (41–55 центов США)
✔️ 41% экономической продукции теперь в Китае приходится на цифровую экономику
Комментируя эти цифры на прошедшей на прошлой неделе конференции China Computing Power, Цзинь Чжуанлун (глава Министерства промышленности и информационных технологий Китая), заявил: «Вычислительная мощность теперь является краеугольным камнем цифровизации». Что 100%но соответствует сформулированной мною еще 2 года назад формуле: «Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке»
Сравнить показатели этого года с результатами предыдущего читатель может по моему прошлогоднему посту «Мировой рейтинг научно-технической мощи государств в 2022».
Там же объясняется, почему в эпоху 2й НТР (эпоха тотальной оцифровки мира) ключевым фактором научно-технической мощи государств становится их вычислительная мощь. Экономическое обоснование этого можно прочесть, например, в работе профессора Варшавской школы экономики Якуба Гровец «What Will Drive Long-Run Growth in the Digital Age?»
#Компьютинг #США #Китай
Сокрушая стены технологических санкций, Китай почти догнал США
Как следует из нового совместного отчета IDC, IEIT Systems и Tsinghua Institute for Global Industry «The 2022-2023 Global Computing Index», за год Китай совершил, казалось бы, невозможное.
Наперекор жесточайшим технологическим санкциям США (по сути, это технологическая война), Китай:
• на 29% увеличил число стоек центров обработки данных в стране с 5,9 млн единиц до 7,6 млн
• на 31% увеличил вычислительную мощность страны с 150 Эксафлопс до 197 (1 Эксафлопс равет 10^18 (квинтилион) флопсов – операций с плавающей запятой в сек)
• на 45% увеличил вычислительную мощность страны, задействованную на развитие ИИ (сейчас это 25% общей вычислительной мощности страны)
• на 23% увеличил объем системы хранения данных с 878 Эксабайт до 1080 (1 Эксабайт равен 10^18 (квинтилион) байтов)
Эти немыслимые показатели роста позволили Китаю вплотную приблизиться к абсолютному мировому лидеру по научно-технической мощи государств – США.
По итогам 2022:
✔️ Масштаб только одной вычислительной отрасли Китая составил ¥1,8 трлн (юаней) - $247 млрд
N.B. в 2025 планируется ¥4,4 трлн (юаней) - $613 млрд
✔️ Масштаб вычислительных ресурсов всех отраслей экономики страны составил ¥9,8 трлн (юаней) - $1,4 трлн (для сравнения – весь ВВП России в 2023 составит около $2,4 трлн)
N.B. в 2025 планируется ¥24 трлн (юаней) - $3,34 трлн
✔️ Каждый юань, потраченный на увеличение вычислительной мощности, увеличивает валовой внутренний продукт Китая на 3–4 юаня (41–55 центов США)
✔️ 41% экономической продукции теперь в Китае приходится на цифровую экономику
Комментируя эти цифры на прошедшей на прошлой неделе конференции China Computing Power, Цзинь Чжуанлун (глава Министерства промышленности и информационных технологий Китая), заявил: «Вычислительная мощность теперь является краеугольным камнем цифровизации». Что 100%но соответствует сформулированной мною еще 2 года назад формуле: «Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке»
Сравнить показатели этого года с результатами предыдущего читатель может по моему прошлогоднему посту «Мировой рейтинг научно-технической мощи государств в 2022».
Там же объясняется, почему в эпоху 2й НТР (эпоха тотальной оцифровки мира) ключевым фактором научно-технической мощи государств становится их вычислительная мощь. Экономическое обоснование этого можно прочесть, например, в работе профессора Варшавской школы экономики Якуба Гровец «What Will Drive Long-Run Growth in the Digital Age?»
#Компьютинг #США #Китай
Forwarded from Малоизвестное интересное
Кай-Фу Ли объявил войну Nvidia и всей ИИ-экосистеме США.
И судя по его последним достижениям, шансы победить есть.
Потрясающе интересное выступление китайского ИИ гуру Кай-Фу Ли будут теперь долго обсуждать. Это абсолютно революционное выступление, прозвучавшее на закрытой дискуссии Collective[i] Forecast, Ли посвятил трем темам.
1. ИИ-экосистема США (основа мировой ИИ-экосистемы) «невероятно больна». Её необходимо кардинально перестроить, иначе на реальном (практическом) прогрессе ИИ можно ставить крест.
Сегодня ИИ-экосистема состоит из Nvidia и мелких производителей ИИ чипов. При этом производители чипов для ИИ зарабатывают сейчас в год $75 млрд, а вендоры ИИ-инфраструктуры – лишь $10 млрд и вендоры ИИ-приложений — лишь $5 млрд».
«Если мы продолжим работать в этой перевернутой пирамиде, это станет проблемой» — сказал Ли. Т.к. это беспрецедентный переворот в экономике классической технологической отрасли. Традиционно производители приложений получают больше, чем поставщики чипов и систем (напр. Salesforce, внедряя CRM, получает куда больше, чем Dell и Intel, производящие компьютеры и чипы для запуска CRM в облаке)
Оздоровить ИИ-экосистему может лишь создание ИИ-компаниями собственных вертикальных интегрированных технологических стеков, как это сделала Apple с iPhone. Только так станет возможным значительно снизить стоимость генеративного ИИ.
2. Главным направление в разработке моделей должно стать снижение стоимости вывода – это самое важное для создания востребованных бизнесом приложений с ИИ.
Сегодняшняя стандартная стоимость сервиса типа GPT-4 составляет $4,40 за млн токенов. Это эквивалентно 57 центам за запрос —и это непростительно дорого, ибо поисковый запрос в Google (без всякого ИИ) обойдется в 180 раз дешевле.
3. Вторым важнейшим направлением в разработке моделей должен стать переход от универсальных базовых моделей к «экспертным моделям».
Бизнесу нужны не универсальные модели, обученные на океанах неразмеченных данных, собранных из Интернета и других источников. Подход «экспертных моделей» подразумевает создание множества нейронок, обученных на отраслевых данных. Это может обеспечить достижение того же уровня «интеллекта», что и универсальная базовая модель, при использовании гораздо меньшей вычислительной мощности.
Самое потрясающее, что все 3 пункта – это не предложения, основанные на предположениях. Стартап Кай-Фу Ли «01.ai» уже делает все это на практике.
И не просто делает, а уже добивается уникальных результатов.
• Их новая модель Yi-Lightning занимает 6-е место в мире (выше выпущенной 5 мес назад GPT-4o). Но при этом это очень маленькая модель, которая чрезвычайно быстра и недорога (всего $0,14 за млн токенов ). Её производительность сопоставима с Grok-2. Но она обучалась всего на 2000 H100 в течение 1 месяца. Что демонстрирует ненужность 100 тыс H100 и ярдов затрат (обучение Yi-Lightning стоило всего $3 млн).
• 01.ai применяет «экспертный» подход к сбору данных. И хотя «инженерам приходится проводить массу неблагодарной черновой работы» по маркировке и ранжированию данных, но – как считает Ли, - Китай с его резервом дешевых инженерных кадров может сделать это лучше, чем США.
• И даже в создании собственного вертикального интегрированного техно-стека есть прогресс. Напр, за счет использования собственных аппаратных инноваций, стоимость одного запроса к ИИ-поисковику BeaGo составляет всего около 1 цента (что приблизилось к стоимости запроса Google без всякого ИИ)
И еще 3 цитаты Ли:
Сила Китая не в том, чтобы делать лучшие прорывные исследования, которые никто не делал раньше, с бюджетом без ограничений. Сила Китая в том, чтобы построить хорошо, быстро, надежно и при этом дешево.
Для предприятий новое поколение ИИ станет их мозгом, а не периферийными приблудами. Для нефтяных компании ИИ будет добывать нефть. Для финансовых — зарабатывать на деньгах.
Для потребителей сегодняшняя модель смартфона, скорее всего, исчезнет.
А ведь еще 1.5 года назад Ли предупреждал - Китай не станет догонять США в ИИ, а сразу пойдет на обгон.
#ИИгонка #Китай
И судя по его последним достижениям, шансы победить есть.
Потрясающе интересное выступление китайского ИИ гуру Кай-Фу Ли будут теперь долго обсуждать. Это абсолютно революционное выступление, прозвучавшее на закрытой дискуссии Collective[i] Forecast, Ли посвятил трем темам.
1. ИИ-экосистема США (основа мировой ИИ-экосистемы) «невероятно больна». Её необходимо кардинально перестроить, иначе на реальном (практическом) прогрессе ИИ можно ставить крест.
Сегодня ИИ-экосистема состоит из Nvidia и мелких производителей ИИ чипов. При этом производители чипов для ИИ зарабатывают сейчас в год $75 млрд, а вендоры ИИ-инфраструктуры – лишь $10 млрд и вендоры ИИ-приложений — лишь $5 млрд».
«Если мы продолжим работать в этой перевернутой пирамиде, это станет проблемой» — сказал Ли. Т.к. это беспрецедентный переворот в экономике классической технологической отрасли. Традиционно производители приложений получают больше, чем поставщики чипов и систем (напр. Salesforce, внедряя CRM, получает куда больше, чем Dell и Intel, производящие компьютеры и чипы для запуска CRM в облаке)
Оздоровить ИИ-экосистему может лишь создание ИИ-компаниями собственных вертикальных интегрированных технологических стеков, как это сделала Apple с iPhone. Только так станет возможным значительно снизить стоимость генеративного ИИ.
2. Главным направление в разработке моделей должно стать снижение стоимости вывода – это самое важное для создания востребованных бизнесом приложений с ИИ.
Сегодняшняя стандартная стоимость сервиса типа GPT-4 составляет $4,40 за млн токенов. Это эквивалентно 57 центам за запрос —и это непростительно дорого, ибо поисковый запрос в Google (без всякого ИИ) обойдется в 180 раз дешевле.
3. Вторым важнейшим направлением в разработке моделей должен стать переход от универсальных базовых моделей к «экспертным моделям».
Бизнесу нужны не универсальные модели, обученные на океанах неразмеченных данных, собранных из Интернета и других источников. Подход «экспертных моделей» подразумевает создание множества нейронок, обученных на отраслевых данных. Это может обеспечить достижение того же уровня «интеллекта», что и универсальная базовая модель, при использовании гораздо меньшей вычислительной мощности.
Самое потрясающее, что все 3 пункта – это не предложения, основанные на предположениях. Стартап Кай-Фу Ли «01.ai» уже делает все это на практике.
И не просто делает, а уже добивается уникальных результатов.
• Их новая модель Yi-Lightning занимает 6-е место в мире (выше выпущенной 5 мес назад GPT-4o). Но при этом это очень маленькая модель, которая чрезвычайно быстра и недорога (всего $0,14 за млн токенов ). Её производительность сопоставима с Grok-2. Но она обучалась всего на 2000 H100 в течение 1 месяца. Что демонстрирует ненужность 100 тыс H100 и ярдов затрат (обучение Yi-Lightning стоило всего $3 млн).
• 01.ai применяет «экспертный» подход к сбору данных. И хотя «инженерам приходится проводить массу неблагодарной черновой работы» по маркировке и ранжированию данных, но – как считает Ли, - Китай с его резервом дешевых инженерных кадров может сделать это лучше, чем США.
• И даже в создании собственного вертикального интегрированного техно-стека есть прогресс. Напр, за счет использования собственных аппаратных инноваций, стоимость одного запроса к ИИ-поисковику BeaGo составляет всего около 1 цента (что приблизилось к стоимости запроса Google без всякого ИИ)
И еще 3 цитаты Ли:
Сила Китая не в том, чтобы делать лучшие прорывные исследования, которые никто не делал раньше, с бюджетом без ограничений. Сила Китая в том, чтобы построить хорошо, быстро, надежно и при этом дешево.
Для предприятий новое поколение ИИ станет их мозгом, а не периферийными приблудами. Для нефтяных компании ИИ будет добывать нефть. Для финансовых — зарабатывать на деньгах.
Для потребителей сегодняшняя модель смартфона, скорее всего, исчезнет.
А ведь еще 1.5 года назад Ли предупреждал - Китай не станет догонять США в ИИ, а сразу пойдет на обгон.
#ИИгонка #Китай
👍44😁4