Forwarded from Пятничный деплой
Небольшая статья о том, как впилить proemtheus метрики в ваш любимый ML, на самом деле подойдет в качестве примера для любого batch приложения на python https://medium.com/under-the-microscope/prometheus-metrics-for-batch-jobs-on-kubernetes-b06ec3b620bc #python #prometheus #k8s
Medium
Prometheus Metrics for Batch Jobs on Kubernetes
How PathAI adopted existing technologies to give our developers the ability to measure their machine learning code performance.
Forwarded from Записки админа
🐍 И вот вам ещё утилита pipx, которая позволяет питонобинарники изолировать в песочнице и запускать их оттуда - https://github.com/pipxproject/pipx
#python #pipx #github
#python #pipx #github
Forwarded from Sysadmin Tools 🇺🇦
HTTP Debugging for Python
Instantly view & debug all HTTP traffic from any #python tool, script, or server
Instantly view & debug all HTTP traffic from any #python tool, script, or server
httptoolkit.tech
HTTP Toolkit
Beautiful, cross-platform & open-source tools for debugging, testing and building with HTTP(S), on Windows, Linux & Mac.
Forwarded from Находки в опенсорсе
Simple real time visualisation of the execution of a #python program: https://github.com/alexmojaki/heartrate
Forwarded from ITGram
python-prompt-toolkit -- штука для создания всяких интерактивных CLI, REPLов и всего такого. Есть подсветка синтаксиса с помощью pygments, автодополнение и всё такое. На нём работает pgcli, ipython, gitsome (умный автокомплит для git), EdgeDB, pyvim (vim на Python, просто потому что) и много что ещё.
#python
#python
GitHub
GitHub - prompt-toolkit/python-prompt-toolkit: Library for building powerful interactive command line applications in Python
Library for building powerful interactive command line applications in Python - prompt-toolkit/python-prompt-toolkit
Forwarded from L̶u̵m̶i̵n̷o̴u̶s̶m̶e̵n̵B̶l̵o̵g̵
Modules and Packages: Live and Let Die! — David Beasley's insane three-hour presentation about the construction of modules, packages and import systems in Python. Everything is pretty comprehensive, from the very basics to the internals with examples.
Recommended👌
#python
Recommended👌
#python
Forwarded from Находки в опенсорсе
You can start a full AWS-ish copy locally with just a single command:
Not sure about why would you need to do it, though.
https://github.com/localstack/localstack
#python #java
docker-compose up Not sure about why would you need to do it, though.
https://github.com/localstack/localstack
#python #java
GitHub
GitHub - localstack/localstack: 💻 A fully functional local AWS cloud stack. Develop and test your cloud & Serverless apps offline
💻 A fully functional local AWS cloud stack. Develop and test your cloud & Serverless apps offline - localstack/localstack
Forwarded from Находки в опенсорсе
A one-click database. No server required.
https://easydb.io/
Clients exist for #js, #python, #ruby, and #shell
https://easydb.io/
Clients exist for #js, #python, #ruby, and #shell
Forwarded from DevOps Deflope News
Новый курс на Coursera от Google про автоматизацию различных операций с помощью Python.
http://amp.gs/ulnc
#coursera #automation #python
http://amp.gs/ulnc
#coursera #automation #python
Forwarded from Sysadmin Tools 🇺🇦
Наткнулся на интересное #бэкап-решение.
Умеет в #s3, дедупликацию, интегрируется с #k8s и #ceph, но также и бэкапить обычные блочные устройства.
OpenSource, написанно на #python.
https://benji-backup.me/
Умеет в #s3, дедупликацию, интегрируется с #k8s и #ceph, но также и бэкапить обычные блочные устройства.
OpenSource, написанно на #python.
https://benji-backup.me/
benji-backup.me
Benji, backup me! — Benji Backup 0.17.0.dev7+g59b914e documentation
Benji Backup Documentation: A block based deduplicating backup software for Ceph RBD, image files and devices
Forwarded from Находки в опенсорсе
Great Expectations: Always know what to expect from your data.
Great Expectations helps data teams eliminate pipeline debt, through data testing, documentation, and profiling.
Software developers have long known that testing and documentation are essential for managing complex codebases. Great Expectations brings the same confidence, integrity, and acceleration to data science and data engineering teams.
See Down with Pipeline Debt! for an introduction to the philosophy of pipeline testing: https://medium.com/@expectgreatdata/down-with-pipeline-debt-introducing-great-expectations-862ddc46782a
Key features:
- Expectations or assertions for data. They are the workhorse abstraction in Great Expectations, covering all kinds of common data issues
- Batteries-included data validation
- Tests are docs and docs are tests: many data teams struggle to maintain up-to-date data documentation. Great Expectations solves this problem by rendering Expectations directly into clean, human-readable documentation
- Automated data profiling: wouldn't it be great if your tests could write themselves? Run your data through one of Great Expectations' data profilers and it will automatically generate Expectations and data documentation
- Pluggable and extensible
https://github.com/great-expectations/great_expectations
#python #ds #docops
Great Expectations helps data teams eliminate pipeline debt, through data testing, documentation, and profiling.
Software developers have long known that testing and documentation are essential for managing complex codebases. Great Expectations brings the same confidence, integrity, and acceleration to data science and data engineering teams.
See Down with Pipeline Debt! for an introduction to the philosophy of pipeline testing: https://medium.com/@expectgreatdata/down-with-pipeline-debt-introducing-great-expectations-862ddc46782a
Key features:
- Expectations or assertions for data. They are the workhorse abstraction in Great Expectations, covering all kinds of common data issues
- Batteries-included data validation
- Tests are docs and docs are tests: many data teams struggle to maintain up-to-date data documentation. Great Expectations solves this problem by rendering Expectations directly into clean, human-readable documentation
- Automated data profiling: wouldn't it be great if your tests could write themselves? Run your data through one of Great Expectations' data profilers and it will automatically generate Expectations and data documentation
- Pluggable and extensible
https://github.com/great-expectations/great_expectations
#python #ds #docops
Forwarded from GitHub'ненько