Forwarded from Machinelearning
VEnhancer - генеративная система апсемлинга пространственно-временных характеристик, которая улучшает результаты существующих методов преобразования текста в видео путем добавления большего количества деталей в пространственной области и синтетического детализированного движения во временной области.
Он гибко адаптируется к различным коэффициентам апсемплинга в диапазоне 1x~8x.
VEnhancer устраняет артефакты и коллизии движения сгенерированных видео, используя диффузионную модель и дообученные модели ControlNet.
Несколько дней назад VEnhancer получил обновление:
Эксперименты, проведенные во время разработки показывают, что VEnhancer превосходит существующие методы апсемплинга видео и современные методы улучшения синтезированных видео.
⚠️ Для обработки видео в 2K разрешении при fps=>24 требуется около 80 GB VRAM.
Использование VEnhancer возможно через CLI, с помощью GradioUI и в виде неофициальной ноды (WIP) для ComfyUI.
# Clone repo
git clone https://github.com/Vchitect/VEnhancer.git
cd VEnhancer
# Create environment
conda create -n venhancer python=3.10
conda activate venhancer
# Install requirments:
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
pip install -r requirements.txt
sudo apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
bash run_VEnhancer.sh
python gradio_app.py
@ai_machinelearning_big_data
#AI #Text2Video #VEnchancer #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1🔥1
Forwarded from Machinelearning
LongLLaVA - мультимодальная модель, предназначена для разработки приложений, требующих понимания длинных видеороликов, изображений высокого разрешения и сложных мультимодальных сценариев.
В модели применяется гибридная архитектура из комбинации блоков Mamba и Transformer в соотношении 7:1. Для сжатия визуальных данных применяется метод 2D-пулинга, который снижает вычислительные затраты при сохранении производительности.
В процессе обучения применялся трехфазный метод: выравнивание по одному изображению, настройка инструкций по одному изображению и настройка инструкций по нескольким изображениям.
Экспериментальные результаты показали, что LongLLaVA превосходит другие модели с открытым исходным кодом по пониманию в длинном контексте, особенно в задачах поиска, подсчета и упорядочивания.
@ai_machinelearning_big_data
#AI #ML #MMLM #LongLLaVA
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1🔥1
Forwarded from Machinelearning
RAG-системы - это комбинация информационного поиска и генеративных моделей, целью которая предоставляет точные и контекстуально релевантные ответы на запросы пользователя.
В репозитории собран большой и регулярно обновляемый набор инструментов, документации и обучающих материалов, предназначенных для теоретического изучения и практического применения для желающих расширить свои знания и навыки в изучении возможностей RAG:
Базовые методы RAG:
Инженерия запросов:
Обогащение контекста и содержания:
Методы поиска:
Итеративные и адаптивные методы:
Интерпретируемость:
Архитектуры:
# Клонируйте репозиторий
git clone https://github.com/NirDiamant/RAG_Techniques.git
#Перейдите к интересующей вас технике
cd all_rag_techniques/technique-name
#Следуйте подробному руководству по применению в каталоге каждой техники.
@ai_machinelearning_big_data
#AI #ML #RAG #AwesomeRAG #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3👍1🥰1
Forwarded from Machinelearning
Swarm - это экспериментальный фреймворк, разработанный командой OpenAI Solutions, для создания, оркестрации и развертывания многоагентных систем. Фреймворк фокусируется на упрощении координации, запуска, контроля и тестирования агентов.
Основная цель Swarm - продемонстрировать паттерны, описанные в Orchestrating Agents: Handoffs & Routines cookbook.
Фреймворк построен на двух основных абстракциях: агентах (
Agent) и передачах управления (handoffs):Агент - это набор инструкций и функций, который может передавать выполнение другим агентам. Его можно использовать для описания конкретного рабочего процесса или шага (например, последовательность шагов, сложный поиск, одноэтапное преобразование данных и так далее).
Передача управления — это процесс, при котором агент может передать запрос другому агенту, возвращая его в функцию. В процессе передачи управления также происходит обновление переменных контекста, что позволяет вернуть более полный объект
Result.⚠️ Swarm не использует API Assistants и полностью работает на API Chat Completions.
⚠️ Swarm не предназначен для промышленного использования и не имеет официальной поддержки.
# Install from PIP
pip install git+https://github.com/openai/swarm.git
# Usage
from swarm import Swarm, Agent
client = Swarm()
def transfer_to_agent_b():
return agent_b
agent_a = Agent(
name="Agent A",
instructions="You are a helpful agent.",
functions=[transfer_to_agent_b],
)
agent_b = Agent(
name="Agent B",
instructions="Only speak in Haikus.",
)
response = client.run(
agent=agent_a,
messages=[{"role": "user", "content": "I want to talk to agent B."}],
)
print(response.messages[-1]["content"])
@ai_machinelearning_big_data
#AI #ML #Agents #OpenAI #Swarm
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3🎉1
Forwarded from Machinelearning
NVIDIA опубликовала на HuggingFace 4 версии Llama-3.1-Nemotron-70B:
Модель получила улучшение в задачах ответа на вопросы и выполнение пользовательских инструкций. Обучение проводилось с использованием RLHF (REINFORCE) на основе Llama-3.1-Nemotron-70B-Reward и датасета HelpSteer2-Preference.
Nemotron-70B-Instruct достигла высоких результатов в тестах Arena Hard (85.0), AlpacaEval 2 LC (57.6) и GPT-4-Turbo MT-Bench (8.98), и обошла GPT-4o и Claude 3.5 Sonnet.
Версия с поддержкой Transformers, полученная путем конвертации, без какого-либо обучения.
Квантованные версии Llama-3.1-Nemotron-70B-Instruct-HF в формате GGUF с разрядностями от 1-bit (16.75 Gb) до 8-bit (74.98 Gb).
Модель с функционалом чата, рассуждений и специальными навыками для оценки качества ответов других LLM. Она использует английский язык и способна оценивать ответы длиной до 4096 токенов, присваивая им баллы, отражающие их качество.
Основана на Llama-3.1-70B-Instruct Base и использует комбинацию методов Bradley Terry и SteerLM Regression Reward Modelling.
Nemotron-70B-Reward занимает первое место в RewardBench.
Версия с поддержкой Transformers, полученная путем конвертации, без какого-либо обучения.
Квантованная версия Llama-3.1-Nemotron-70B-Reward-HF в формате MLX (40 Gb).
Вместе с моделями опубликован датасет HelpSteer2 - набор данных на английском языке, предназначенный для обучения reward-моделей, которые используются для повышения полезности, фактической точности и связности ответов других LLM.
HelpSteer2 содержит 21 362 строки, каждая из которых включает в себя запрос, ответ и пять аннотированных человеком атрибутов ответа: полезность, правильность, связность, сложность и многословность.
⚠️ Представленные модели требуют систему с как минимум 4 GPU NVIDIA (40 Gb) или 2 GPU (80 Gb) и 150 Gb свободного места на диске.
⚠️ Для локального развертывания Llama-3.1-Nemotron-70B без поддержки Transformers рекомендуется использовать NVIDIA NeMo Framework и TRT-LLM.
@ai_machinelearning_big_data
#AI #ML #LLM #Nemotron #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1🔥1
Forwarded from Machinelearning
Проект Open-Sora-Plan предлагает набор инструментов и моделей для генерации видео на основе текстовых запросов и решения сопутствующих задач: восстановление и улучшение качества видео, интерполяция кадров и уточнение текстовых описаний.
Он использует вейвлет-преобразование для разложения видео на поддиапазоны, захватывая информацию в различных частотных областях.
Методика Skiparse организовывает токены-кандидаты для внимания с помощью двух чередующихся методов пропуска и сбора, сокращая количество операций с плавающей запятой.
Cостоит из анализа семантической схожести кадров, ОСR для обнаружения субтитров, оценки эстетики и качества видео, анализа движения и повторной оценкb движения с учетом субтитров.
Стратегия позволила сократить датасет Panda70m до 27% от исходного.
Open-Sora-Plan v1.3.0 поддерживает динамическое разрешение и длительность видео, обрабатывая отдельные кадры как изображения.
⚠️ Такое масштабное обновление позволило значительно сократить аппаратные требования инференса и генерировать 93 кадра text-to-video в разрешении 480р на 24 GB VRAM.
CausalVideoVAE, Prompt Refiner, Text-to-Video, Image-to-Video доступны в репозитории проекта.
@ai_machinelearning_big_data
#AI #ML #OpenSora #Text2Video #Image2Video
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤4🔥2
Forwarded from Machinelearning
Stability AI, следуя своему анонсу, выпустила в открытый доступ младшую text-to-image модель семейства Stable diffusion 3.5 - Medium c 2.6 млрд. параметров.
Модель позиционируется в семействе SD 3.5 как решение для работы на потребительском оборудовании.
SD 3.5 Medium способна генерировать изображения с разрешением от 0.25 до 2 мегапикселей, а для запуска с максимальной производительностью ей требуется всего 9.9 Gb VRAM.
Stable Diffusion 3.5 Medium претерпела ряд изменений в архитектуре (MMDiT-X вместо MMDiT ) и протоколах обучения для корреляции качества с числом параметров, связности и возможности генерации изображений с различным разрешением.
SD 3.5 Medium прошла обучение на разрешениях от 256 до 1440 пикселей.
Текстовые энкодеры не претерпели изменений, остались те же, что и у Stable Diffusion 3.5 Large: OpenCLIP-ViT/G, CLIP-ViT/L и T5-xxl.
Для локального использования модели рекомендуется использовать ComfyUI (базовый воркфлоу) или или Diffusers.
# install Diffusers
pip install -U diffusers
# Inference
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
image = pipe(
"A happy woman laying on a grass",
num_inference_steps=28,
guidance_scale=3.5,
).images[0]
image.save("woman.png")
#AI #ML #Diffusion #SD3_5Medium #StabilityAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥1
Forwarded from Machinelearning
TIPO (Text to Image with text presampling for Prompt Optimization) - метод, который улучшает качество и удобство использования моделей text-2-image.
TIPO использует LLM для предварительной обработки текстовых запросов, делая их более точными и информативными. Он воспринимает как промпты на естественном языке , так и формат Danbooru тегов.
Основная идея метода заключается в том, что более детальные и конкретные запросы приводят к более точной генерации изображений, тогда как неконкретные запросы приводят к более широкому спектру, но менее точным результатам.
TIPO генерирует несколько подробных вариантов запроса из одного простого, тем самым расширяя пространство возможных результатов и повышая вероятность получения желаемого изображения.
Представлены 2 модели TIPO, обе построены на базе LLaMA 400M, обученные на наборах Danbooru2023, GBC10M и Coyo-HD-11M с общим числом токенов 30 млррд.
@ai_machinelearning_big_data
#AI #ML #T2I #TIPO #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2🔥1
Forwarded from Machinelearning
Туториал ориентируется на нетехническую аудиторию, которая имеет опыт взаимодействия с большими языковыми моделями.
В первой половине представлены ментальные конструкции природы посттренинга и промптов. Вторая половина содержит более конкретные предписания и высокоуровневую процедуру промпт-инжиниринга.
Авторы, Varun Godbole и Ellie Pavlick подчеркивают, что поиск «идеальной» подсказки — это итеративный процесс, аналогичный настройке модели, который в лучшем случае является эмпирическим, а в худшем - алхимическим.
@ai_machinelearning_big_data
#AI #ML #LLM #Prompt #Github #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2
Forwarded from Machinelearning
PydanticAI - фреймворк для Python, созданный командой разработчиков Pydantic, который упрощает создание приложений с использованием LLM. Фреймворк имеет простой и интуитивно понятный интерфейс для взаимодействия с LLMs, поддерживающими Async OpenAI (Ollama) и openAI API (ChatGPT, Gemini и Groq), с поддержкой Anthropic в ближайшем будущем.
Основная особенность PydanticAI - система внедрения зависимостей, которая передает данные, соединения и логику в целевую модель. Она упрощает тестирование и оценку агентов и позволяет динамически формировать системные промпты и определять инструменты, доступные LLM.
PydanticAI имеет возможность потоковой обработки ответов с валидацией структурированных данных, позволяя контролировать корректность соответствие данных ожидаемому ответу, тем самым повышая эффективность и интерактивность приложений.
Для отладки и мониторинга работы агентов предусмотрена интеграция с Pydantic Logfire, с которым можно отслеживать запросы к базам данных, анализировать поведение модели и оценивать производительность.
⚠️ PydanticAI находится на ранней стадии бета-тестирования.
# Install via PyPI
pip install pydantic-ai
# Set Gemini API key
export GEMINI_API_KEY=your-api-key
# Run example
from pydantic_ai import Agent
agent = Agent(
'gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.',
)
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""
@ai_machinelearning_big_data
#AI #ML #LLM #Agents #Framework #PydanticAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1🔥1
Forwarded from Machinelearning
Fish Speech - модель генерации TTS обновилась до версии 1.5. Эта версия обучалась на 1 млн.часов мультиязычных аудиоданных и заняла 2 место в бенчмарке TTS-Arena (как "Anonymous Sparkle").
Заявлена задержка <150 мс с высококачественным мгновенным клонированием голоса.
Fish Speech для локального инференса требует 4Gb GPU и 8 BG GPU для файнтюна. Запуск возможен на MacOS, Linux и Windows в режимах CLI, GUI и WebUI и Docker.
Подробные инструкции по установке, инференсу в различных режимах для каждой платформы, туториал по файнтюну и примеры доступны в документации проекта Fish Speech.
⚠️ Репозиторий на Github еще не обновлен информацией о версии 1.5, а официальное демо от разработчиков поддерживает синтез только на английском, китайском и японском.
@ai_machinelearning_big_data
#AI #ML #TTS #FIshSpeech
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5❤1👍1
Forwarded from Machinelearning
Подразделение FAIR компании Марка Цукерберга представила новые исследовательские результаты, направленные на развитие исследований в ИИ, а их открытая публикация должна способствовать ускорению общего прогресса:
Модель обучена с применением нового алгоритма, который позволяет представлять состояния, движения и вознаграждения в едином латентном пространстве. Motivo демонстрирует высокую производительность в сравнении со специализированными методами, превосходит современные подходы неконтролируемого обучения с подкреплением и проявляет устойчивость к изменениям окружающей среды.
Метод добавляет незаметные водяные знаки, устойчивые к редактированию и сжатию, чтобы маркировать и отслеживать происхождение сгенерированных видеоматериалов. Video Seal является развитием предыдущей разработки Audio Seal.
Метод, который постепенно заменяет классическую диффузию и повышает производительность и эффективность обобщения при создании изображений, видео, аудио и 3D-структур.
Он уже применяется в продуктах Movie Gen, Audiobox и Melody Flow, а также в Stable-Diffusion-3, Flux, Fold-Flow и Physical Intelligence Pi_0.
Этот подход позволяет создавать разнообразные и сложные сценарии для обучения LLM. Экспериментальное применение Explore Theory-of-Mind с Llama-3.1 7B привело к увеличению точности на 27 пунктов на тесте ToMi.
Основная идея LCM заключается в том, чтобы отделить рассуждения от представления языка, и она вдохновлена тем, как люди могут планировать высокоуровневые мысли для общения. LCM значительно отличается от типичного LLM. Вместо того чтобы предсказывать следующую лексему, LCM обучается предсказывать следующую концепцию или идею высокого уровня, представленную полным предложением в мультимодальном и многоязычном пространстве эмбедингов.
DBLT превосходит модели на основе токенизаторов по надежности, в среднем на 7 пунктов, и отлично справляется с обработкой longtail и rare sequences of unseen symbols.
Метод, который помогает эффективно хранить и извлекать информацию через специальные "слои памяти" без значительного роста вычислительных затрат. Он позволяет моделям работать лучше и точнее на задачах, связанных с фактами.
Она позволяет легко использовать воспроизводимые автоматические оценки T2I-моделей и поддерживает настройку с использованием пользовательских метрик, датасетов и визуализаций.
@ai_machinelearning_big_data
#AI #ML #FAIR #Digest
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3🔥1
Forwarded from Machinelearning
VidTok – универсальный и открытый видео токенизатор, демонстрирующий высокую производительность как в непрерывной, так и в дискретной токенизации.
Токенизация видео, преобразующая исходные данные в компактные латентные токены - важнейший шаг для задач генерации и понимания видео. VidTok предлагает ряд улучшений, которые позволяют ему превзойти существующие методы: модельную архитектуру, методы квантования и стратегии обучения.
В архитектуре VidTok пространственное и временное сэмплирование обрабатываются раздельно, используя 2D свертки для пространственных модулей и оператор AlphaBlender для временных, при этом сохраняя 3D свертки для слияния информации.
Для дискретной токенизации используется конечное скалярное квантование (FSQ), которое оптимизирует неявный кодовый словарь, улучшая стабильность обучения. Эффективность обучения достигается двухэтапной стратегией: предварительное обучение на видео с низким разрешением, а затем дообучение декодера на видео с высоким разрешением.
VidTok обучался на датасете видеоданных с разным разрешением (400 000 видео 480p и 10 000 видео 1080p). Производительность измерялась с использованием метрик PSNR, SSIM, LPIPS и FVD, результаты показали превосходство VidTok по сравнению с другими токенизаторами как в дискретной, так и в непрерывной токенизации.
При сравнении с MAGVIT-v2, OmniTokenizer, CV-VAE, Open-Sora и Cosmos-Tokenizer, VidTok достиг лучших показателей, с меньшим размером модели.
vidtok - базовое название;kl или fsq - тип регуляризации и квантования латентного пространства;causal или noncausal - тип обработки временной информации (покадрово или все кадры сразу);488 или 41616 - компрессионное соотношение (VCR), которое определяет степень сжатия видео по времени, высоте и ширине. Например, 4x8x8 и 4x16x16;4chn, 8chn или 16chn - количество каналов в латентном пространстве для непрерывных токенизаторов. Чем больше каналов - тем качественней видео;262144, 32768 или 4096 - размер codebook для дискретных токенизаторов с использованием FSQ. Чем больше - тем точнее представлятся информация.# Clone repo
git clone https://github.com/microsoft/VidTok
cd VidTok
# Create conda env
conda env create -f environment.yaml
conda activate vidtok
# Inference
import torch
from scripts.inference_evaluate import load_model_from_config
cfg_path = "configs/vidtok_kl_causal_488_4chn.yaml"
ckpt_path = "checkpoints/vidtok_kl_causal_488_4chn.ckpt"
is_causal = True
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# load pre-trained model
model = load_model_from_config(cfg_path, ckpt_path)
model.to(device).eval()
# random input
num_frames = 17 if is_causal else 16
x_input = (torch.rand(1, 3, num_frames, 256, 256) * 2 - 1).to(device) # [B, C, T, H, W], range -1~1
# model forward
_, x_recon, _ = model(x_input)
assert x_input.shape == x_recon.shape
@ai_machinelearning_big_data
#AI #ML #Microsoft #VidTok
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥2
Forwarded from Machinelearning
Большая подборка примеров внедрения генеративного ИИ от ведущих компаний, правительств, исследовательских институтов и стартапов по всему миру. Они демонстрируют, как организации используют ИИ-агентов для повышения производительности, автоматизации процессов и улучшения клиентского опыта, что в итоге приводит к ощутимой отдаче от инвестиций.
@ai_machinelearning_big_data
#ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2❤1👍1🥰1
Forwarded from Machinelearning
В нем содержится все, что вам нужно знать:
> Описание агентов, компонентов и когнитивных архитектур.
> Разобраны инструменты по работе с агентами: расширения, написании функций и хранилища данных.
> Описываются методы обучения для повышения производительности агентов.
> Описываются методы создания агентов с использованием LangChain и LangGraph
▪ Читать гайд
@ai_machinelearning_big_data
#aiagents #ai #llm #ml #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4👍1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Основная цель инструмента - обеспечить "
temporal-grounded video understanding", то есть способность отвечать на вопросы о видео, точно указывая на конкретные моменты (визуальные доказательства) в видеоряде, что является сложной задачей для стандартных больших языковых моделей.Как работает:
Chain-of-LoRA", которая позволяет эффективно переключаться между различными ролями с помощью легковесных адаптеров LoRA (Low-Rank Adaptation) без необходимости загружать несколько отдельных моделей, оптимизируя баланс между гибкостью и вычислительной эффективностью.@ai_machinelearning_big_data
#agent #ai #ml #video
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1🔥1
Forwarded from Machinelearning
Позволяет создать нативные приложенийяпрямо внутри ChatGPT.
Идея простая: теперь не нужно выходить из ChatGPT, чтобы делать привычные вещи.
Можно прямо в чате работать с дизайном в Figma, создавать презентации в Canva, искать жильё на Booking или смотреть курсы на Coursera — всё в одном окне.
Платформа поддерживает авторизацию, оплату и подключение внешних сервисов,
а значит, ChatGPT становится центром, где совмещаются ИИ, приложения и автоматизация задач.
Скоро разработчики (вайбкодеры) смогут добавлять свои приложения и зарабатывать на них через ChatGPT SDK.
По сути это убийца n8n и Zapier.
Это интуитивно понятный**визуальный конструктор**, где можно создавать своих ИИ-агентов без единой строчки кода.
Просто перетаскиваешь блоки, подключаешь MCP и ChatKit — и агент сам ищет файлы, анализирует данные и выполняет задачи.
Инструмент уже доступен всем.
OpenAi умеют в дизайн, должно быть удобно.
Можно уже попробовать: https://platform.openai.com/agent-builder
Вышел из беты, получил интеграцию со Slack и собственный SDK.
На демо агент управлял светом и экраном голосом - без кода.
На презентации заявили, что теперь почти весь их код пишется с помощью Codex
Благодаря Codex разработчики OpenAI стали отправлять на 70% больше pull-request’ов в неделю, чем раньше.
Теперь у кодекса появляется интеграция со Slack и SDK, чтобы разработчики могли встраивать его в свои рабочие процессы.
Прямо в эфире Codex написал код для управления камерой, сам собрал интерфейс и **запустил готовое при
$15 за ввод и $120 за вывод за 1M токенов
Gpt-realtime-mini - на 70% дешевле, подходит для мгновенных ответов и потоковых задач
Можно будет генерировать видео прямо из кода
PS: Agent Builder выглядит действительно интересно - интуитивный, гибкий, инструмент с большим потенциало
м.
А вот насколько полезными окажутся приложения внутри ChatGPT, не особо понятно.
OpenAI не боится экспериментировать.
Они развивают ChatGPT как платформу, ищут
новые варианты захвата рынка и пробуют смелые идеи. Это дорогого стоит.
Их интерфейс просто топ: минимализм, аккуратность, почти в духе Apple. UX - на уровне искусства.
У OpenAI уже более 800 млн активных пользователей в неделю и они обрабатывают 6 миллиардов токенов в минуту!
К концу года число пользователей, похоже, вплотную подойдёт к 1 миллиарду.
Но гонка только начинается.
Google явно готовит ответ - Gemini 3 обещает быть топом. Другие игроки тоже не дремлют.
@ai_machinelearning_big_data
#openai #chatgpt #llm #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1🔥1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Создание AI-агентов становится одной из самых востребованных профессий на рынке.
Теперь вы можете научиться этом на курсе.
Курс научит вас реализовывать четыре ключевых паттерна дизайна агентов:
- Reflection - как агент анализирует свои ответы и улучшает их
- Tool use - модель выбирает, какие инструменты использовать (поиск, почта, календарь, код и т.д.)
- **Planning**- ИИ планирует и разбивает задачу на подзадачи
- Multi-agent collaboration - взаимодействие нескольких агентов, как сотрудников в команде
Andrew Ng делает акцент на оценке (evals) и анализе ошибок - ключевых навыках для успешной отладки агентных систем.
В курсе есть практика, где можно создадите deep research-агента, который умеет искать, синтезировать и формировать отчёты, применяя все эти паттерны.
- Все уроки и код на Python
- Очень подробно и пошагало объяснены все вунтренности
- В курсе рассматриваются для самые популярные фреймворками для создания ИИ агентнов
Требование для учащихся - базовые знания Python
@ai_machinelearning_big_data
#AI #AgenticAI #AndrewNg #DeepLearningAI #AIagents
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3🔥2
Forwarded from Machinelearning
⚡️ Glyph: масштабирование контекста через визуально-текстовую компрессию
В основе модели лежит простая идея : вместо того чтобы кормить модели километровый текст, Glyph превращает его в изображение и обрабатывает через vision-language модель.
Используется LLM-управляемый генетический алгоритм, чтобы подобрать наилучшие параметры визуального отображения текста (шрифт, плотность, макет), балансируя между сжатием и точностью.
Это радикально снижает вычислительные затраты, сохраняя при этом смысловую структуру текста.
При этом точность почти не падает: на задачах с длинным контекстом Glyph работает на уровне современных моделей вроде Qwen3-8B.
При экстремальном сжатии VLM с контекстом 128K может эффективно обрабатывать задачи, эквивалентные 1M+ токенов в традиционных LLM.
Фактически, длинный контекст становится мультимодальной задачей, а не чисто текстовой.
📄 Подробности: arxiv.org/abs/2510.17800
🧩 Веса: huggingface.co/zai-org/Glyph
👉 Репозиторий: github.com/thu-coai/Glyph
@ai_machinelearning_big_data
#AI #LLM #Multimodal #Research #DeepLearning
В основе модели лежит простая идея : вместо того чтобы кормить модели километровый текст, Glyph превращает его в изображение и обрабатывает через vision-language модель.
Используется LLM-управляемый генетический алгоритм, чтобы подобрать наилучшие параметры визуального отображения текста (шрифт, плотность, макет), балансируя между сжатием и точностью.
Это радикально снижает вычислительные затраты, сохраняя при этом смысловую структуру текста.
При этом точность почти не падает: на задачах с длинным контекстом Glyph работает на уровне современных моделей вроде Qwen3-8B.
При экстремальном сжатии VLM с контекстом 128K может эффективно обрабатывать задачи, эквивалентные 1M+ токенов в традиционных LLM.
Фактически, длинный контекст становится мультимодальной задачей, а не чисто текстовой.
📄 Подробности: arxiv.org/abs/2510.17800
🧩 Веса: huggingface.co/zai-org/Glyph
👉 Репозиторий: github.com/thu-coai/Glyph
@ai_machinelearning_big_data
#AI #LLM #Multimodal #Research #DeepLearning
1👍3❤2🔥1
Forwarded from Библиотека баз данных
Media is too big
VIEW IN TELEGRAM
🔥 Hugging Face снова выкатили полезные материалы.
Вышел бесплатный плейбук о том, как изнутри строят SOTA-модели.
Без общих слов - только реальные решения и нюансы, которые обычно скрыты внутри исследовательских команд.
Это полноценный мастеркласс на 214 страниц для тех, кто хочет понимать, как устроены современные LLM.
Что внутри:
• Логика построения модели: зачем → что → как
• Как разработчики берут модель и по частям включают/выключают компоненты (или меняют их)
• Архитектура: ключевые выборы и trade-offs
• Искусство подбора и очистки данных
• Как проходит обучение моделей
• Пост-тренинг и RLHF в 2025
• Инфраструктура больших моделей
По первым страницам - уровень деталей как в Ultra-scale playbook.
Ссылка: https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook#designing-the-model-architecture
Видео: https://www.youtube.com/watch?v=LGzO-Mn0DJQ
#AI #LLM #MachineLearning #HuggingFace
@sql_lib - библиотека МЛ и ИИ книг
Вышел бесплатный плейбук о том, как изнутри строят SOTA-модели.
Без общих слов - только реальные решения и нюансы, которые обычно скрыты внутри исследовательских команд.
Это полноценный мастеркласс на 214 страниц для тех, кто хочет понимать, как устроены современные LLM.
Что внутри:
• Логика построения модели: зачем → что → как
• Как разработчики берут модель и по частям включают/выключают компоненты (или меняют их)
• Архитектура: ключевые выборы и trade-offs
• Искусство подбора и очистки данных
• Как проходит обучение моделей
• Пост-тренинг и RLHF в 2025
• Инфраструктура больших моделей
По первым страницам - уровень деталей как в Ultra-scale playbook.
Ссылка: https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook#designing-the-model-architecture
Видео: https://www.youtube.com/watch?v=LGzO-Mn0DJQ
#AI #LLM #MachineLearning #HuggingFace
@sql_lib - библиотека МЛ и ИИ книг
❤2👍2🔥2