Codeby
36.3K subscribers
1.96K photos
96 videos
12 files
7.75K links
Блог сообщества Кодебай

Чат: @codeby_one
Форум: codeby.net
Обучение: codeby.academy

CTF: hackerlab.pro

VK: vk.com/codeby
YT: clck.ru/XG99c

Сотрудничество: @KinWiz

Реклама: @Savchenkova_Valentina
Download Telegram
Adversarial Robustness Toolbox (ART) — это Python‑библиотека для безопасности моделей машинного обучения: она помогает атаковать, защищать и проверять ML‑системы на устойчивость к угрозам вроде подмены входных данных или отравления обучающей выборки.

🔎 Что такое ART и кому она нужна
ART развивается под эгидой Linux Foundation AI & Data и изначально была запущена IBM как открытый инструмент для исследований в области adversarial machine learning. Библиотека ориентирована одновременно на red team и blue team.

❗️ Поддерживаемые фреймворки, данные и задачи
➡️ Фреймворки: TensorFlow, Keras, PyTorch, MXNet, scikit‑learn, XGBoost, LightGBM, CatBoost, GPy и др., то есть большинство популярных стеков для классического ML и DL.
➡️ Типы данных: изображения, табличные данные, аудио, видео и другие форматы, что позволяет тестировать как CV‑модели, так и, например, речь или временные ряды.
➡️ Задачи: классификация, детекция объектов, генерация, задачи сертификации и верификации устойчивости и т.п.

⛓️‍💥 Типы атак в ART
ART реализует десятки сценариев, сгруппированных вокруг четырёх основных классов угроз:
⏺️Evasion: небольшие модификации входных данных, которые заставляют модель ошибаться (adversarial examples для картинок, аудио и т.д.).
⏺️Poisoning: изменение обучающей выборки для скрытого влияния на поведение модели в проде.
⏺️Extraction: попытка «украсть» модель через массовые запросы к её API и восстановить или клонировать её поведение.
⏺️Inference: атаки на приватность, когда по ответам модели пытаются восстановить данные обучения.

#ai #security #adversarial #tool

🔗 Все наши каналы 🔁 Все наши чаты 🪧 Для связи с менеджером
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍8🔥6👾2