Big Data AI
17.1K subscribers
925 photos
118 videos
19 files
928 links
@haarrp - админ

Вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейроннным сетям

@data_analysis_ml - анализ данных

@ai_machinelearning_big_data

@itchannels_telegram - важное для программиста

РКН: clck.ru/3Fmqxe
Download Telegram
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ ИИ-ассистент Replit удалил производственную базу данных.

Replit, позиционирующая себя как инструмент для вайбкодинга, оказалась в центре скандала. Джейсон Лемкин, основатель SaaStr, подробно описал свой опыт, который начался с восторга от скорости прототипирования и перерос в серьезные проблемы.

Несмотря на явные и многократные инструкции не вносить изменения без разрешения, ИИ-агент удалил его производственную базу данных. Ситуацию усугубила противоречивая реакция техподдержки, которая сначала заявила о невозможности восстановления данных, а затем все же смогла их вернуть.

Лемкин пришел к выводу, что Replit пока не готов для серьезной работы. Инструмент не только проигнорировал прямые запреты, но и не смог обеспечить "заморозку кода".
theregister.com

✔️ Стартап Composite AI выпустил локального браузерного ИИ-агента.

Агент, представленный Composite AI, автоматизирует рутинные действия в интернете: клики, ввод текста и навигацию по сайтам. Ключевое отличие от большинства аналогов в том, что он работает локально в браузере пользователя, а не в облаке. Это дает ему прямой доступ к входу в учетные записи пользователя без необходимости сложной настройки или передачи данных на сторонние серверы.

По заявлению разработчиков, инструмент работает на любом веб-сайте и выполняет действия в реальном времени. Пока агент доступен только на macOS. Бесплатная пробная версия действует 30 дней и включает 1000 запросов к топовым моделям. Платный тариф стоит 20 долларов в месяц за те же 1000 запросов, которые предоставляются ежемесячно.
composite.com

✔️ В платформу X интегрируют генерацию видео.

Соцсеть X скоро получит собственный инструмент для создания видеороликов из текстовых описаний. По словам Илона Маска, новая фича под названием «Imagine» будет основана на интеграции технологий стартапа Hotshot, который его компания, xAI, приобрела в марте, с чат-ботом Grok.

Х планирует дать пользователям возможность быстро создавать креативные вирусные видео. Это позволит ей конкурировать с Veo от Google. Еще до поглощения Hotshot был известен в сообществе ИИ-энтузиастов своими разработками в области text-to-video.
finance.yahoo.com

✔️ NVIDIA открыла платформу CUDA для процессоров с архитектурой RISC-V.

На саммите RISC-V в Китае NVIDIA анонсировала открытие платформы CUDA для поддержки процессоров с открытой архитектурой RISC-V. Впервые в истории проприетарная технология выходит за пределы экосистем x86 и Arm, что может значительно ускорить внедрение RISC-V в высокопроизводительных системах.

Согласно анонсу, CPU на базе RISC-V теперь смогут выступать в роли центрального управляющего компонента в ИИ-системах, использующих технологии NVIDIA. Компания уже продемонстрировала референсную архитектуру, где процессор RISC-V отвечает за операционную систему и логику, графические ускорители NVIDIA - за интенсивные вычисления, а DPU - за сетевые задачи.
RISC-V в сети X

✔️ В обучении ИИ меняется тенденция: вместо разметчиков данных теперь нанимают дорогих экспертов.

ИИ-компании Scale AI, Turing и Toloka отказываются от услуг низкооплачиваемых разметчиков данных в пользу узкопрофильных специалистов. Этот тренд обусловлен появлением моделей нового поколения, способных к ризонингу. Для их обучения простого аннотирования данных уже недостаточно.

Новая стратегия требует от экспертов не просто маркировать данные, а демонстрировать свой мыслительный процесс, например, в формате цепочки рассуждений. Инженеры и ученые решают комплексные задачи, а модель учится на их примерах.
ft.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍2🔥2
🧠 SmallThinker — новая серия LLM, нативно обученная для локального запуска

SmallThinker — это семейство языковых моделей, созданное с нуля для запуска на обычных устройствах:
📉 низкая память, 🐌 медленное хранилище, без GPU — и всё это без потери качества.

🔧 Технологии под капотом:
• Двухуровневая разреженность: MoE + sparse ReGLU (>60% нейронов неактивны)
• Pre-attention router: предсказание нужных экспертов заранее → читаем с SSD параллельно
• NoPE-RoPE гибрид: 1:3 глобальное:локальное внимание → KV-кэш в 4 раза меньше
• Кэширование и оффлоадинг экспертов → экономим CPU и дисковый ввод
• Sparse LM head: предсказываем подмножество словаря, не нужен полный софтмакс
• Чекпойнт-мёрджинг: баланс между универсальностью и инструкционной точностью

⚙️ Производительность (CPU-only, Q4_0):
🪶 4B-A0.6B (1 ГБ ОЗУ): 82.3% HumanEval, 66.1% MMLU, 108 ток/с
🚀 21B-A3B (8 ГБ ОЗУ): 89.6% HumanEval, 84.4% MMLU — на уровне Qwen3‑30B, но с 85× меньшим потреблением памяти

🏃‍♂️ Работает на CPU, ARM, Raspberry Pi — 20–108 токенов/сек.
📦 Полностью open-source. Готово к локальному использованию без компромиссов.

#LLM #SmallThinker #AI #LocalLLM #OpenSource

HF: https://huggingface.co/PowerInfer
PAPER: https://arxiv.org/abs/2507.20984
4👍3
Forwarded from Machinelearning
🚀 Tencent расширяет экосистему Hunyuan LLM и выкладывают в открытый доступ еще 4 компактных моделей — 0.5B, 1.8B, 4B и 7B!

Эти модели заточены под low-power устройства: ПК, смартфоны, авто, умные дома и пользовательские GPU.

Модели легко настраиваются под вертикальные задачи и запускаются даже на одной карте.

💡 Особенности:
Fast/slow thinking режимы: лаконичные или глубокие ответы
256K контекст и продвинутые агентные способности (tool use, планирование, reasoning)
Хорошие метрики на тестах по языку, математике и логике
Модели готовы к продакшену — работают с SGLang, vLLM, TensorRT-LLM

🖥 GitHub:
- 0.5B: https://github.com/Tencent-Hunyuan/Hunyuan-0.5B
- 1.8B: https://github.com/Tencent-Hunyuan/Hunyuan-1.8B
- 4B: https://github.com/Tencent-Hunyuan/Hunyuan-4B
- 7B: https://github.com/Tencent-Hunyuan/Hunyuan-7B

🤗 Hugging Face:
- 0.5B: https://huggingface.co/tencent/Hunyuan-0.5B-Instruct
- 1.8B: https://huggingface.co/tencent/Hunyuan-1.8B-Instruct
- 4B: https://huggingface.co/tencent/Hunyuan-4B-Instruct
- 7B: https://huggingface.co/tencent/Hunyuan-7B-Instruct

🔗 Подробнее: https://hunyuan.tencent.com/modelSquare/home/list

@ai_machinelearning_big_data


#Tencent #Hunyuan #ml #llm #ai #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
📐 gpt-oss работает на специальном формате промптов — Harmony, и без него просто не будет выдавать корректные ответы.

Зачем нужен Harmony?
Этот формат нужен для:
🧠 генерации chain of thought рассуждений
🔧 корректного вызова функций и использования инструментов
📦 вывода в разные каналы: обычный ответ, reasoning, tool call
🗂️ поддержки tool namespaces и иерархических инструкций

💡 Harmony имитирует OpenAI Responses API, так что если вы с ним работали — будет легко освоиться.

👉 Если вы используете gpt-oss через HuggingFace, Ollama или vLLM, волноваться не нужно — формат уже встроен.
Но если строите свой inference стек — обязательно изучите [гайд по Harmony](https://github.com/openai/harmony).

Без него модель просто не будет работать как надо.


💻 GitHub: https://github.com/openai/harmony


#AI #OpenAI #Harmony
4👍4🥰1🤮1