📢 Калифорния первой в США выпустила закон, обязывающий ИИ признавать, что они не люди
Штат принял закон SB 243 - первый в стране, регулирующий AI-чат-ботов-компаньонов.
Основные положения:
▪Если пользователь может подумать, что говорит с человеком, бот обязан показать уведомление, что он искусственный интеллект.
Компании должны иметь протокол предотвращения суицида: блокировать подобный контент и направлять пользователей на горячие линии помощи.
Этот протокол должен быть опубликован на сайте.
При общении с несовершеннолетними бот обязан напоминать каждые 3 часа, что это ИИ, и советовать сделать перерыв.
Запрещено выдавать себя за врача или иного специалиста в области здоровья.
Для подростков должен быть фильтр от сексуального контента.
С июля 2027 года операторы обязаны ежегодно отчитываться в Офисе по предотвращению самоубийств о своих действиях при выявлении риска.
Пользователи смогут подавать в суд на компании — минимум на $1 000 за каждое нарушение.
В тот же день подписаны сопутствующие меры:
Закон SB 53 (сентябрь 2025) — обязывает крупных разработчиков ИИ публиковать протоколы безопасности.
Новые правила о проверке возраста, предупреждениях на соцсетях и штрафах до $250 000 за дипфейк-порнографию.
Закон принят после громких случаев и исков, связанных с вредными взаимодействиями подростков с чат-ботами, включая CharacterAI и дело о гибели пользователя ChatGPT.
techcrunch
#ai #news
Штат принял закон SB 243 - первый в стране, регулирующий AI-чат-ботов-компаньонов.
Основные положения:
▪Если пользователь может подумать, что говорит с человеком, бот обязан показать уведомление, что он искусственный интеллект.
Компании должны иметь протокол предотвращения суицида: блокировать подобный контент и направлять пользователей на горячие линии помощи.
Этот протокол должен быть опубликован на сайте.
При общении с несовершеннолетними бот обязан напоминать каждые 3 часа, что это ИИ, и советовать сделать перерыв.
Запрещено выдавать себя за врача или иного специалиста в области здоровья.
Для подростков должен быть фильтр от сексуального контента.
С июля 2027 года операторы обязаны ежегодно отчитываться в Офисе по предотвращению самоубийств о своих действиях при выявлении риска.
Пользователи смогут подавать в суд на компании — минимум на $1 000 за каждое нарушение.
В тот же день подписаны сопутствующие меры:
Закон SB 53 (сентябрь 2025) — обязывает крупных разработчиков ИИ публиковать протоколы безопасности.
Новые правила о проверке возраста, предупреждениях на соцсетях и штрафах до $250 000 за дипфейк-порнографию.
Закон принят после громких случаев и исков, связанных с вредными взаимодействиями подростков с чат-ботами, включая CharacterAI и дело о гибели пользователя ChatGPT.
techcrunch
#ai #news
❤5👍3👀2🔥1🤡1
Forwarded from Machinelearning
🧠 Андрей Карпаты научил nanochat считать буквы - и объяснил, как расширять способности модели.
Карпаты показал, как добавить новую функцию в мини-LLM nanochat d32, чьи размеры он сравнил с «мозгом пчелы».
Он обучил модель считать, сколько раз буква r встречается в слове strawberry - и использовал этот пример, чтобы показать, как можно наделять маленькие языковые модели новыми навыками через синтетические задачи.
Он использует задачу SpellingBee, которая генерирует диалоги вида:
> «Сколько букв r в слове strawberry?»
и правильные ответы.
После этого модель дообучается (**SFT**) или проходит обучение с подкреплением (RL), чтобы закрепить навык.
Далее модель проходит дообучение (SFT) или обучение с подкреплением (RL), чтобы закрепить навык.
Карпаты объясняет, что для маленьких моделей важно продумывать всё до мелочей, как разнообразить запросы, как устроена токенизация и даже где ставить пробелы.
Он показывает, что рассуждения лучше разбивать на несколько шагов, тогда модель легче «понимает» задачу.
Nanochat решает задачу двумя способами:
— логически, рассуждая пошагово,
— и через встроенный Python-интерпретатор, выполняя вычисления прямо внутри чата.
🧩 Идея в том, что даже крошечные LLM можно «научить думать», если правильно подготовить примеры и синтетические данные.
📘 Полный разбор: github.com/karpathy/nanochat/discussions/164
@ai_machinelearning_big_data
#AI #Karpathy #Nanochat #LLM #SFT #RL #MachineLearning #OpenSource
Карпаты показал, как добавить новую функцию в мини-LLM nanochat d32, чьи размеры он сравнил с «мозгом пчелы».
Он обучил модель считать, сколько раз буква r встречается в слове strawberry - и использовал этот пример, чтобы показать, как можно наделять маленькие языковые модели новыми навыками через синтетические задачи.
Он использует задачу SpellingBee, которая генерирует диалоги вида:
> «Сколько букв r в слове strawberry?»
и правильные ответы.
После этого модель дообучается (**SFT**) или проходит обучение с подкреплением (RL), чтобы закрепить навык.
Далее модель проходит дообучение (SFT) или обучение с подкреплением (RL), чтобы закрепить навык.
Карпаты объясняет, что для маленьких моделей важно продумывать всё до мелочей, как разнообразить запросы, как устроена токенизация и даже где ставить пробелы.
Он показывает, что рассуждения лучше разбивать на несколько шагов, тогда модель легче «понимает» задачу.
Nanochat решает задачу двумя способами:
— логически, рассуждая пошагово,
— и через встроенный Python-интерпретатор, выполняя вычисления прямо внутри чата.
🧩 Идея в том, что даже крошечные LLM можно «научить думать», если правильно подготовить примеры и синтетические данные.
📘 Полный разбор: github.com/karpathy/nanochat/discussions/164
@ai_machinelearning_big_data
#AI #Karpathy #Nanochat #LLM #SFT #RL #MachineLearning #OpenSource
🔥6❤1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Подразделение FAIR компании Марка Цукерберга выпустило Omnilingual ASR для 1600 языков, 500 из которых ранее не были ни в одной ИИ-системе. Фишка проекта - «Bring Your Own Language», которая использует контекстное обучение. Она позволяет добавлять поддержку новых языков на основе всего несколько пар аудиозаписей и текстовых примеров, без необходимости полного переобучения.
Размеры моделей семейства - от 300 млн. до 7 млрд. параметров. Для 78% поддерживаемых языков уровень ошибки по символам (CER) не превышает 10. Дополнительно опубликован датасет Omnilingual ASR Corpus с данными для 350 языков.
github.com
Microsoft разрабатывает набор инструментов, позволяющий адаптировать модели NVIDIA CUDA для работы на платформе AMD ROCm. Цель — снизить затраты на оборудование для инференса, переведя часть нагрузок на более доступные графические процессоры AMD.
Решение представляет собой слой совместимости, который транслирует вызовы API из CUDA в ROCm в реальном времени, что избавляет от необходимости полностью переписывать исходный код. Работу сильно тормозит незрелость экосистемы ROCm: не для всего кода CUDA удается найти эффективный аналог, что может влиять на производительность в крупных дата-центрах.
Готовый инструментарий используется преимущественно внутри компании и дорабатывается совместно с AMD для дальнейшей оптимизации.
wccftech.com
xAI анонсировала хакатон, который пройдет 6-7 декабря в Сан-Франциско. Его участники займутся разработкой нового поколения ИИ-приложений, получив для этого приоритетный доступ к новой модели Grok и API платформы X.
Мероприятие пройдет в нон-стоп формате. Организаторы обещают предоставить все необходимое: от мониторов и спальных мешков до питания и энергетиков. Пять лучших проектов опубликуют на официальной странице xAI, а тройку лидеров ждут специальные награды. Подать заявку можно до 22 ноября 2025 года, они рассматриваются по мере поступления.
x.ai
Исследование Гамбургского университета показало, что новостные рекомендации ChatGPT сильно различаются в зависимости от того, используется ли веб-интерфейс или API. Анализ более 24 000 ответов на немецком языке выявил четкую закономерность.
Веб-версия активно ссылается на лицензионных партнеров OpenAI (около 13% всех ссылок), а ответы через API почти не содержат этих источников (всего 2%), отдавая предпочтение энциклопедическим сайтам вроде Wikipedia и малоизвестным локальным изданиям.
Интересно, что запрос на «разнообразие источников» не всегда улучшает качество. Хотя число уникальных сайтов растет, модель начинает чаще ссылаться на политически ангажированные ресурсы, пропаганду и даже несуществующие домены или сайты с сгенерированными «новостями». Исследователи предполагают, что для ChatGPT «разнообразие» может означать лишь лингвистические отличия, а не содержательную вариативность.
osf.io
Фонд Wikimedia опубликовал обращение к разработчикам ИИ, указав на их зависимость от человеческого труда. В фонде считают, что генеративные модели не способны самостоятельно исследовать и проверять факты, поэтому курируемый людьми контент остается ключевым источником знаний.
В связи с этим фонд призывает ИИ-компании корректно маркировать заимствованный контент и использовать его на справедливых лицензионных условиях. Без финансовой поддержки и должного признания, по мнению Wikimedia, вся концепция открытых знаний находится под угрозой.
Заявление последовало после запуска сервиса "Grokipedia", активно использующего данные энциклопедии. При этом Wikipedia уже отмечает снижение посещаемости, так как пользователи получают информацию из её статей напрямую в ответах чат-ботов.
wikimediafoundation.org
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2