Facebook open sourced Horizon, an end-to-end applied reinforcement learning platform built on #PyTorch 1.0. Horizon uses RL to optimize systems in large-scale production environments and we're excited to make it accessible to anyone using #RL at scale.
https://code.fb.com/ml-applications/horizon/
https://code.fb.com/ml-applications/horizon/
Engineering at Meta
Horizon: The first open source reinforcement learning platform for large-scale products and services
An end-to-end platform built on PyTorch 1.0 that is designed to jump start RL’s transition from research papers to production
❤1
Facebook has released #PyText — new framework on top of #PyTorch.
This framework is build to make it easier for developers to build #NLP models.
https://code.fb.com/ai-research/pytext-open-source-nl..
Github: https://github.com/facebookresearch/pytext
This framework is build to make it easier for developers to build #NLP models.
https://code.fb.com/ai-research/pytext-open-source-nl..
Github: https://github.com/facebookresearch/pytext
Engineering at Meta
Open-sourcing PyText for faster NLP development
To make it easier to build and deploy natural language processing (NLP) systems, we are open-sourcing PyText, a modeling framework that blurs the boundaries between experimentation and large-scale …
TTT - это метод, который позволяет моделям искусственного интеллекта адаптироваться и учиться непосредственно во время использования, а не только во время предварительного обучения.
Основное преимущество TTT заключается в том, что он может эффективно обрабатывать длинные контексты (большие объемы входных данных) без значительного увеличения вычислительных затрат.
Исследователи провели эксперименты на различных наборах данных, включая книги, и обнаружили, что TTT часто превосходит традиционные методы.
По сравнительным бенчмаркам с другими популярными методами машинного обучения, такими как трансформеры и рекуррентные нейронные сети, было обнаружено, что в некоторых задачах TTT работает лучше.
Этот революционный метод позволит приблизиться к созданию более гибких и эффективных моделей искусственного интеллекта, способных лучше адаптироваться к новым данным в реальном времени.
На Github опубликованы адаптации метода:
- адаптация под Pytorch
- адаптация под JAX
@ai_machinelearning_big_data
#Pytorch #Jax #TTT #LLM #Training
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤43🔥26👍10🎉2⚡1
Основная идея метода заключается в применении процедуры диффузии для моделирования вероятностных распределений по токенам. Такой подход исключает традиционную категориальную кросс-энтропийную функцию потерь в пользу функции Diffusion Loss. Так устраняется необходимость в сложных и зачастую несовершенных токенизаторах с дискретными значениями, чувствительных к Gradient Approximation и субоптимальному качеству реконструкции.
В прикладной реализации используется сеть денойзинга, небольшая MLP-сеть, которая работает на основе вектора, производимого авторегрессивной моделью. Эта сеть обучена предсказывать распределение для каждого токена через функцию денойзинг-диффузии.
В результате MAR+DiffLoss модель может быстро генерировать изображения высокого качества , используя внутренние преимущества скорости моделирования последовательностей.
Одним из полученных достижений в ходе исследования стала способность модели генерировать изображения со скоростью менее 0,3 секунды на изображение при достижении впечатляющего показателя Fréchet Inception Distance (FID) менее 2,0 на наборе данных ImageNet.
Для тестирования демонстрации метода предлагается настроенный ноутбук для Google Collab. Помимо этого, в репозитории на Github размещены инструкции и код для самостоятельной тренировки моделей и запуску оценочного бенчмарка на датасете ImageNet.
⚠️ Внимание, тренировочный процесс крайне ресурсоемкий.
@ai_machinelearning_big_data
#AI #ML #Diffusion #Pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25🔥7❤2