385K subscribers
4.48K photos
867 videos
17 files
4.92K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🖥 NVIDIA представила новое открытое семейство моделей Nemotron 3

✔️ Nemotron 3 Nano - это универсальная модель для рассуждений и чата, ориентированная на локальный запуск.

Ключевые характеристики:
- MoE-архитектура: 30B параметров всего, ~3.5B активных
- Контекст до 1 миллиона токенов
- Гибридная архитектура:
- 23 слоя Mamba-2 + MoE
- 6 attention-слоёв
- Баланс между скоростью и качеством рассуждений

Требования:
- необходимо около 24 ГБ видеопамяти для локального запуска

Модель хорошо подходит для длинных диалогов, анализа документов и reasoning-задач

Интересный пример того, как MoE и Mamba начинают реально снижать требования к железу, сохраняя масштаб контекста и качество.

✔️ Nemotron 3 Super и Nemotron 3 Ultra значительно превосходят Nano по масштабу - примерно в 4 раза и 16 раз соответственно. Но ключевой момент здесь не просто в размере моделей, а в том, как NVIDIA удалось увеличить мощность без пропорционального роста стоимости инференса.

Для обучения Super и Ultra используется NVFP4 и новая архитектура Latent Mixture of Experts. Она позволяет задействовать в четыре раза больше экспертов при той же стоимости инференса. По сути, модель становится «умнее» за счёт более гибкого выбора экспертов, а не за счёт постоянной активации всех параметров.

Дополнительно применяется Multi-Token Prediction, что ускоряет обучение и улучшает качество рассуждений на длинных последовательностях. Это особенно важно для agentic и multi-agent сценариев, где модели работают с длинным контекстом и сложными цепочками решений.

NVIDIA публикует не только веса, но и данные для предобучения и постобучения, а также технические детали, которые объясняют, почему эти модели одновременно быстрые и сильные.

Такой уровень открытости - редкость для моделей этого масштаба и хороший сигнал для индустрии.

🟡Release: https://developer.nvidia.com/blog/inside-nvidia-nemotron-3-techniques-tools-and-data-that-make-it-efficient-and-accurate/
🟡Guide: https://docs.unsloth.ai/models/nemotron-3
🟡GGUF: https://huggingface.co/unsloth/Nemotron-3-Nano-30B-A3B-GGUF
🟡lmstudio: https://lmstudio.ai/models/nemotron-3

@ai_machinelearning_big_data


#AI #LLM #NVIDIA #Nemotron3 #OpenSource #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4821👍20🦄3👌2
🍏 Apple представила SHARP - фотореалистичный 3D генератор из одного изображения

SHARP - это исследовательский проект Apple, который умеет создавать фотореалистичные новые ракурсы сцены, имея всего одну фотографию.

Нейросеть за один проход предсказывает 3D-сцены в виде гауссианов.

Полученную 3D-сцену можно:
- рендерить в реальном времени
- получать высококачественные изображения с близких ракурсов
- двигать камеру в реальных метрических координатах

Главные фишки:
- используется метрическое 3D-представление с абсолютным масштабом
- поддерживаются реальные движения камеры
- модель работает zero-shot, без дообучения на новых датасетах

Модель устанавливает новый уровень качества сразу на нескольких наборах данных:

- метрика LPIPS улучшена на 25–34%
- метрика DISTS улучшена на 21–43% по сравнению с лучшими предыдущими моделями

При этом время генерации снижено в тысячи раз.

SHARP показывает, насколько далеко продвинулись методы 3D-реконструкции и view synthesis — и как быстро такие технологии начинают работать в реальном времени, а не только в лаборатории.

Github: https://github.com/apple/ml-sharp
HF: https://huggingface.co/apple/Sharp
Демки: https://apple.github.io/ml-sharp/

@ai_machinelearning_big_data

#apple #llm #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4814🦄5🔥4
⚡️ Xiaomi MiMo-V2-Flash: MoE с 309 млрд. общих и 15 активных параметров.

Модель интересна нестандартным подходом к механизму внимания. Xiaomi использовали гибридную схему, чередующую глобальное внимание и внимание скользящего окна в пропорции 1 к 5.

Само скользящее окно всего 128 токенов, но несмотря на такую компактность, модель получила контекстное окно в 256 тыс. токенов.

🟡Модель создавалась с фокусом на эффективность инференса.

MiMo-V2-Flash выдает 150 токенов в секунду по API и добиться таких показателей удалось благодаря Multi-Token Prediction .

В отличие от стандартных методов, где декодирование упирается в пропускную способность памяти из-за низкой арифметической интенсивности, MTP генерирует несколько черновых токенов за раз. Основная модель затем валидирует их параллельно.

Блок MTP в MiMo-V2-Flash спроектирован легковесным: он использует плотную сеть прямого распространения вместо MoE и опирается на все то же скользящее окно внимания.

Измерения показали, что в этом есть смысл: при использовании 3-слойного MTP длина принятой последовательности составляет от 2,8 до 3,6 токена, что дает чистое ускорение инференса в 2,0–2,6 раза без увеличения операций ввода-вывода KV-кэша.

🟡На пост-трейне использовали парадигму Multi-Teacher Online Policy Distillation.

Ее суть в том, что модель-студент сэмплирует варианты ответов из собственной политики, а награды ей выдают сразу несколько моделей-учителей.

Это дало возможность масштабировать RL с ощутимой экономией: для пиковой производительности учителей требуется менее 1/50 вычислительных ресурсов по сравнению с традиционными пайплайнами SFT+RL.

🟡Боевые метрики на бенчмарках выглядят красиво.

На SWE-bench Verified модель набрала 73,4%. Это первое место среди всех открытых моделей и очень близко к показателям GPT-5-High.

В мультиязычном тесте SWE-bench Multilingual решила 71,7% задач.

В математическом AIME 2025 и научном бенчмарке GPQA-Diamond MiMo-V2-Flash входит в топ-2 среди open-source решений.

Для задач поиска на BrowseComp результат составил 45,4, а при использовании управления контекстом вырос до 58,3.

В прямом сравнении ризонинг-задачах MiMo-V2-Flash держит паритет с K2 Thinking и DeepSeek V3.2 Thinking, но превосходит K2 Thinking на длинных контекстах.


🔜 Есть бесплатный доступ по API до конца года (потом - $0,1 за млн. входных токенов и $0,3 за млн. выходных).


📌Лицензирование: MIT License.


🟡Статья
🟡Техотчет
🟡Demo
🟡Модель


@ai_machinelearning_big_data

#AI #ML #LLM #MiMOv2Flash #Xiaomi
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
21👍13🔥8🆒1