382K subscribers
4.43K photos
851 videos
17 files
4.87K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
⚡️ KlingAI запустит новую омни-модель на этой неделе.

Kling AI — это сервис для генерации видео китайской компании Kuaishou (Kwai). Наибольшую известность он получил как аналог OpenAI Sora, способный создавать по текстовому описанию видеоролики с поддержкой консистентности персонажей и продвинутыми инструментами.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍28🔥20🥰4👏21🦄1
🚀 Релиз DeepSeek-V3.2 и DeepSeek-V3.2-Speciale - модели нового поколения, созданные в первую очередь для reasoning и работы в агентных системах.

Что нового:
- DeepSeek-V3.2 - официальный преемник V3.2-Exp. Доступна в приложении, на сайте и через API.
- DeepSeek-V3.2-Speciale - улучшенная версия с акцентом на продвинутое многошаговое рассуждение. Пока что работает только через API.

Обе модели делают упор на глубокие цепочки рассуждений и поведение, нацеленное на агентные сценарии: планирование, решение задач, сложные выводы и работу со структурированными данными.

🏆 Производительность

• V3.2 - баланс скорости и качества, уровень примерно GPT-5
• V3.2-Speciale - топовый reasoning, конкурирует с Gemini-3.0-Pro.
• Speciale - лидер на IMO, CMO, ICPC.

🤖 Новый подход к обучению агентов

• Синтезированы большие тренировочные данные для 1800+ сред и 85k сложных инструкций.
• V3.2 - первая модель DeepSeek, у которой мышление встроено прямо в tool-use.

💻 API

• V3.2 использует тот же интерфейс, что V3.2-Exp.
• Speciale доступна через временный endpoint, работать будет до 15 декабря 2025.

📦 DeepSeek-V3.2 Model: https://huggingface.co/deepseek-ai/DeepSeek-V3.2
📦 DeepSeek-V3.2-Speciale Model: https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Speciale
📄 Tech report: https://huggingface.co/deepseek-ai/DeepSeek-V3.2/resolve/main/assets/paper.pdf

@ai_machinelearning_big_data

#deepseek, #deepseekv3, #ai, #нейросети, #искусственныйинтеллект, #llm
55🔥24👍17🦄2👏1
Media is too big
VIEW IN TELEGRAM
⚡️ Runway представили новый видеогенератор **Gen-4.5** - заметный шаг вперёд по качеству и управляемости видео.

Что улучшили:
- более детализированное и чистое изображение
- реалистичную динамику и движения объектов
- улучшенную физику, освещение и поведение материалов
- точное следование промпту, включая сложные сцены

Gen-4.5 уверенно работает с быстрыми движениями, сложными ракурсами и умеет контролировать камеру, композицию, звук и другие параметры сцены.
Поддерживаются разные стили-— от фотореализма до пластилиновой анимации.

Что может:
- Image-to-Video
- Video-to-Video
- Keyframes
- Управление движением камеры

Runway заявляет, что скорость и потребление ресурсов сопоставимы с Gen-4, но качество заметно выше.
На сайте модель пока помечена как *soon*, цены ещё не отображаются, API пока недоступен. Доступ пользователям будут открывать постепенно.

По метрикам тоже впечатляет: Gen-4.5 набрала 1 247 Elo в рейтинге *Artificial Analysis Text-to-Video*, установив новый рекорд и обойдя все существующие AI-модели для генерации видео.

Анонс: https://app.runwayml.com/video-tools/

@ai_machinelearning_big_data

#runway #runwayml #gen45 #gen4_5 #videogen #ai_
🔥3214👍10🤗2👌1🤨1🦄1
Media is too big
VIEW IN TELEGRAM
✔️ Дженсен Хуанг потребовал тотальной автоматизации внутри Nvidia.

CEO Nvidia обратился к сотрудникам с директивой использовать ИИ-инструменты для решения абсолютно любой задачи, где это технически возможно. Хуанг считает, что компания должна не только давать миру железо для вычислений, но и сама служить эталоном ИИ-эффективности.

Особое внимание он уделил инструментам разработки, настаивая на их тотальном внедрении в инженерные процессы. Несмотря на автоматизацию, компания продолжает расти. За год штат Nvidia увеличился с 29,6 до 36 тысяч человек, и для покрытия текущих задач требуется нанять еще около 10 тысяч специалистов.

NVIDIA не первая, кто требует от сотрудников использования ИИ - Google и Microsoft также начали привязывать использование нейросетей к KPI сотрудников.
techspot.com

✔️ В тестовой версии ChatGPT для Android нашли признаки рекламы.

Разработчик Тибор Блахо обнаружил в тестовой версии ChatGPT для Android отсылки на рекламный функционал. Строки содержат формулировки: «рекламная функция», «поисковая реклама» и «карусель поисковой рекламы», что указывает на то, что OpenAI, возможно, разрабатывает функцию показа рекламы в ChatGPT.
Tibor Blaho в сети X

✔️ Pinokio обновился до версии 5.0.

Мажорное обновление платформы Pinokio, позиционирует пятую версию как «Vercel для localhost». Инструмент позволяет разворачивать на macOS, Windows и Linux любые веб-серверы, CLI-приложения и ИИ-модели в один клик. Система полностью автоматизирует рутину по настройке окружения, самостоятельно подтягивая необходимые пакетные менеджеры.

Pinokio может создавать лаунчеры для любых проектов с помощью ИИ-агентов. Интерфейс стал универсальным, добавлена поддержка интерактивных терминалов и режим Cells для параллельной работы с фронтендом, бэкендом и логами в одном окне. В новой версии появился «локальный интернет»: Pinokio присваивает запущенным приложениям короткие HTTPS-домены и делает их доступными для других устройств в сети, автоматически активируя сервисы при входящем запросе.
Автор Pinokio в сети X

✔️ Пятая часть научных рецензий на ICLR были полностью написаны ИИ.

Организаторы конференции ICLR опубликовали результаты проверки контента, проведенной совместно с Pangram Labs. Анализ массива из 75 800 отзывов показал, что почти 16 тыс. рецензий (около 21%) были полностью сгенерированы ИИ, а не написаны людьми. Проблема затронула и сами научные статьи: 199 поданных рукописей были распознаны как полностью написанные ИИ, а еще в 9% работ доля сгенерированного текста превысила 50%.

Хотя регламент ICLR допускает использование ИИ-инструментов для правки текста или генерации кода при условии явного указания, создание синтетических рецензий подрывает доверие к процессу ревью. В ответ на инцидент организаторы вводят обязательный автоматизированный скрининг всех материалов на использование ИИ.
nature.com

✔️ Slop Evader: расширение, которое очищает поиск от ИИ-контента.

Проект позиционируется как попытка вернуть пользователям достоверный интернет эпохи до ChatGPT. Расширение использует Google Search API для жесткой фильтрации выдачи, отсекая любые материалы, опубликованные после 30 ноября 2022 года. Автор называет этот подход тактикой «выжженной земли»: по ее мнению, это единственный надежный способ гарантировать, что контент создан человеком, в условиях тотального ИИ-слопа.

Slop Evader работает с YouTube, Reddit, Stack Exchange и архивами других крупных платформ. Очевидный технический недостаток полной потери доступа к актуальным новостям является осознанной частью концепции. Создатель расширения надеется, что растущий запрос пользователей на «человеческий» контент в итоге вынудит поисковые системы внедрить маркировку генеративных материалов.
404media.co


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2925🔥9🦄2
📌NVIDIA на NeurIPS 2025.

NVIDIA анонсировала, о чем расскажет на конференции NeurIPS, которая началась сегодня и пройдет до 7 декабря в Сан-Диего.

🟡Автономный транспорт.

NVIDIA DRIVE Alpamayo-R1, или сокращенно AR1.
Это первая в мире открытая ризонинг-VLA модель специально для исследований в области автопилотов. Модель построена на базе NVIDIA Cosmos Reason и отлично поддается дообучению с помощью RL.

Alpamayo-R1 будет доступна на GitHub и Hugging Face, а фреймворк AlpaSim для тестов уже опубликован.

🟡Инструменты для создания физических роботов и симуляций.

Cosmos Cookbook - руководство с рецептами для физического ИИ и генерации синтетических данных и оценки моделей.

LidarGen - "модель мира", которая генерирует данные лидаров для симуляций.

Omniverse NuRec Fixer - инструмент мгновенного исправления артефактов в нейронных реконструкциях а робототехнике и БПЛА.

ProtoMotions3 - открытый фреймворк на базе Isaac Lab, позволяющий тренировать цифровых людей с невероятно реалистичной физикой.

🟡Но не только железом и роботами живет NVIDIA.

MultiTalker Parakeet - модель для ASR нескольких спикеров даже в быстром темпе и с перекрытиями.

В паре с ней идет Sortformer - инструмент для диаризации, т. е. разделения спикеров в аудиопотоке в реальном времени.

Ну и, конечно, NeMo Gym - библиотека для создания сред обучения с RL в комплекте с NeMo Data Designer, комплексом для создания и проверки синтетических наборов данных.

🟡И, наконец, о чистой науке.

К конференции NVIDIA подготовила более 70 научных работ. Вот лишь несколько жемчужин из этого списка:

Audio Flamingo 3. Это большая аудио-языковая модель, которая может "понимать" и анализировать аудиозаписи длительностью до 10 минут.

Minitron-SSM. Техника прунинга, которая позволила уменьшить модель Nemotron-H 8B с 8 до 4 млрд. параметров, при этом удвоив скорость инференса.

ProRL, или Prolonged Reinforcement Learning. Концепция, которая доказала, что продление процесса RL выводит модели на совершенно новый уровень в ризонинге.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3022🔥7🤗3❤‍🔥1🦄1
Media is too big
VIEW IN TELEGRAM
🤖 Китайская компания EngineAI (Zhòngqíng) представила полноразмерного гуманоидного робота T800.

«Всё реальная съёмка - без CGI, без AI, без ускорения видео.»

Основные характеристики робота:
- рост 173 см
- 29 степеней свободы (без учёта кистей)
- пиковый крутящий момент суставов - 450 Н·м

Функции и возможности:
- система кругового обзора 360°
- активное охлаждение суставов ног
- аккумулятор на 4–5 часов работы

@ai_machinelearning_big_data

#ai #robots
Please open Telegram to view this post
VIEW IN TELEGRAM
52🤣50👍27😨20🥰4🤩3🆒2❤‍🔥1
Media is too big
VIEW IN TELEGRAM
✔️ Anthropic покупает создателей скоростного JavaScript-рантайма.

Компания объявила о приобретении Bun — популярного инструментария для запуска и сборки JavaScript-приложений. Технологии и команда стартапа станут фундаментом для дальнейшего масштабирования платформы Claude Code.

Bun, основанный Джаредом Самнером в 2021 году, завоевал популярность как экстремально быстрая альтернатива Node.js, объединяющая в себе рантайм, пакетный менеджер, бандлер и тестовый раннер.

Bun останется опенсорсным проектом под лицензией MIT. Anthropic обещает продолжить инвестировать в инструмент, сохраняя его статус независимого и универсального решения для JS/TS-экосистемы.
anthropic.com

✔️ AWS представила 3-нм чипы Trainium3 и серверы UltraServer.

Это третье поколение тензорных процессоров Amazon. Trainium3, изготовленный по 3-нм техпроцессу, показывает буст по производительности до 4.4x и энергоэффективности в 4 раза по сравнению с Trainium 2. Архитектура чипа поддерживает новые форматы данных MXFP8 и MXFP4.

UltraServer - это вычислительный узел, объединяющий 144 чипа с общим объемом памяти 20.7 ТБ HBM3e и агрегированной пропускной способностью 706 ТБ/с. Такие серверы можно объединять в кластеры EC2 UltraClusters масштабом более 1 млн. чипов.

Также AWS потизерила будущий Trainium 4: следующее поколение чипов получит совместимость с GPU NVIDIA через шину NVLink Fusion.
aws.amazon.com

✔️ vLLM-Omni: расширение экосистемы vLLM.

Команда vLLM анонсировала релиз vLLM-Omni, расширения, созданного для адаптации инфраструктуры под omni-модели, которые могут бесшовно работать с текстом, изображениями, видео и аудио в рамках одного процесса.

Архитектура vLLM-Omni предлагает полностью переработанный поток данных. Система использует дезагрегированный пайплайн, объединяющий 3 этапа: мультимодальные энкодеры, логическое ядро на базе vLLM и генераторы.

vLLM-Omni может эффективно оркестрировать сложные гетерогенные рабочие процессы и параллельно выполнять вычисления. Фреймворк сохраняет простоту внедрения, поддерживая полную совместимость с OpenAI API и Hugging Face.
blog.vllm.ai

✔️ SGLang получил поддержку NVIDIA Model Optimizer.

Важное обновление SGLang, которое кардинально упрощает работу ML-инженеров, позволяя проводить квантование и деплой моделей внутри одной экосистемы без использования сторонних утилит и сложных пайплайнов.

Теперь разработчики могут напрямую через API конвертировать модели в форматы NVFP4, MXFP4, FP8 и сразу запускать их в продакшн. Тесты на архитектуре NVIDIA Blackwell показали, что использование квантования NVFP4 через SGLang удваивает пропускную способность по сравнению с базовым FP8.
lmsys.org

✔️ Artificial Analysis запустила индекс открытости ИИ-моделей.

Openness Index — новый стандарт оценки ИИ, который отделяет настоящий опен-сорс от моделей, которые лишь притворяются открытыми. Рейтинг анализирует проекты по 2 направлениям: доступность весов и прозрачность процесса разработки (методология и датасеты для пре- и пост-трейна).

Верхние строчки рейтинга заняли китайские разработки. Среди коммерческих решений хороший результат показала Nemotron Nano 9B v2 (67 баллов), а вот полностью закрытые проприетарные модели ожидаемо остались на дне рейтинга с оценками в 1–5 баллов. Лидером списка стала модель OLMo с показателем 89.

Индекс наглядно подсвечивает проблему термина «open weights»: модели, публикующие только веса без контекста, теряют баллы на прозрачности.
Artificial Analysis в сети Х

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4534👍7🍓6🦄1
⚡️ Как Яндекс внедрил LLM в QA и что из этого получилось

На Хабре вышел подробный разбор о том, как Яндекс внедряет LLM в процессы тестирования. Из интересного: генерация чек-листов и тест-кейсов, создание автотестов, первые шаги в сторону ИИ-агентов для ручного тестирования.

Разобрали и технические сложности: интеграции с TMS, единые MCP-коннекторы, LLM-As-A-Judge и работу с «зоопарком» инструментов. В статье много схем и цифр, включая рост скорости написания автотестов на ~30%.

@ai_machinelearning_big_data

#ai #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
🤷3112👍9🔥5🤬4😁2
🌟 Trinity Nano и Trinity Mini: ответ американских разработчиков на китайское доминирование.

В последний год любой, кто следит за развитием моделей с открытыми весами знает - Китай недостижим.

Qwen и DeepSeek фактически задали стандарт того, как должна выглядеть современная архитектура MoE. В США же большинство компаний занимались лишь доработкой чужих чекпоинтов.

И вот, американская компания Arcee AI собралась Make America Great Again вернуть инициативу и создать семейство открытых моделей, обученных "от и до" в США, весами которых бизнес может владеть по-настоящему.

Компания столкнулась с тем, что корпоративным клиентам нужна "юрисдикционная безопасность" . Специалистов по комплаенсу уже не устраивает ответ "мы дообучили модель неизвестного происхождения". Им нужен полный контроль над пайплайном данных.

Семейство моделей Arcee AI получило имя Trinity. Пока в превью-релиз вошли 2 конфигурации:

🟢Trinity Mini — это обычная ризонинг-модель на 26 млрд. общих и 3 млрд активных параметров, обученная с нуля.

🟢Trinity Nano Preview — это модель чата. Она создана, чтобы быть харизматичной и интересной в общении несмотря на свои скромные 6 млрд. общих и 1 млрд. активных параметров.

И пока мы тестируем Nano и Mini, Arcee AI тренирует флагмана Trinity Large.

Его релиз запланирован на январь 2026 года. Это будет модель на 420 млрд. параметров, из которых 13 млрд. будут активны.

Обе доступные модели, Trinity Nano и Trinity Mini выпущены под лицензией Apache 2.0. Они опубликованы на Hugging Face и поддерживаются llama.cpp, LM Studio и vLLM.

Mini также доступна через OpenRouter по очень привлекательной цене - около 4,5 центов за 1 млн. токенов.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Набор моделей
🟡Demo Trinity Mini


@ai_machinelearning_big_data

#AI #ML #MoE #Trinity #ArceeAi
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4214🔥12🥰5🦄3
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI придумала, как заставить модель сообщать о своих галлюцинациях.

OpenAI опубликовала исследование новой техники Confessions. Метод решает проблему, когда модели пытаются обмануть систему оценки^ используют reward hacking или выдают уверенные, но ложные факты ради получения высокого балла.

Суть - в генерации вторичного ответа. После выдачи результата модель формирует отдельный отчет, где анализирует свое поведение на предмет соответствия инструкциям и получает награду за точное описание своих ошибок, даже если в основном ответе она соврала или нарушила правила.

Тесты на GPT-5 Thinkin показали пригодность Confessions: вероятность того, что ИИ нарушит правила и скроет это, упала до 4,4%. Важно понимать, что метод не предотвращает галлюцинации, а служит диагностическим инструментом.
openai.com

✔️ Amazon представила семейство моделей Nova и инструменты для создания ИИ-агентов.

Amazon запустил новую линейку из 4 моделей Nova. В нее вошли версии Lite и Pro, ориентированные на ризонинг, речевая модель Sonic и мультимодальная Omni, работающая одновременно с текстом, изображениями и видео. Все новые сервисы интегрированы в инфраструктуру AWS. Также был представлен сервис Nova Forge, позволяющий компаниям создавать кастомные версии моделей на собственных данных.

Кроме того, анонсирован инструмент Nova Act для создания агентов, автоматизирующих действия в браузере. Nova Act поддерживает архитектуру Human-in-the-Loop для передачи сложных задач человеку, а также предоставляет возможности для отладки: полные логи и записи сессий можно сохранять напрямую в Amazon S3.
aboutamazon.com

✔️ Выходцы из Tesla, Google и Nvidia запустили стартап UMA.

Новая компания Universal Mechanical Assistant (UMA) официально объявила о выходе на рынок. Она будет делать роботов для выполнения реальной физической работы в промышленных масштабах .

В инженерный костяк вошли Реми Каден (разработчик Tesla Autopilot и фреймворка LeRobot), Пьер Сермане (ветеран исследований в DeepMind), а также Роберт Найт, создатель робота SO-100.

UMA уже разрабатывает 2 аппаратные платформы: мобильного промышленного робота с двумя манипуляторами для складов и компактного гуманоида для работы в больницах и жилых помещениях. Стартап заручился поддержкой Яна Лекуна и Томаса Вольфа.
businesswire.com

✔️ KlingAI обновила видеогенератор до версии 2.6.

Новая модель поддерживает режим audio-video co-generation. Она генерирует видеоряд одновременно со звуковым сопровождением в рамках единого процесса. Система умеет создавать диалоги между несколькими персонажами, музыкальные клипы и сложные звуковые сцены (ASMR или экшен) с высокой точностью липсинка.

Есть технические ограничения: генерация голоса поддерживается только на английском и китайском языках (запросы на других языках автоматически переводятся в английский). В режиме Image-to-Video качество финального ролика теперь еще сильнее зависит от разрешения исходного изображения.
klingai.com

✔️ Opera интегрировала Gemini в десктопные браузеры One и GX.

Поддержка Gemini тестировалась исключительно в экспериментальной ветке Opera Neon, а теперь стала доступной в Opera One и геймерском Opera GX. Интеграция реализована через боковую панель.

Ассистент получил доступ к контексту браузера: он может анализировать содержимое активных веб-страниц, групп вкладок и видео, выполняя по запросу саммари или сравнительный анализ контента. Заявлена полноценная мультимодальность: движок обрабатывает не только текст, но и голосовые команды, изображения и загруженные файлы.

Техническая часть тоже изменилась. Разработчики перенесли в основные браузеры новую архитектуру с агентным подходом, изначально обкатанную в Neon. Это позволило увеличить скорость генерации ответов на 20%.
prnewswire.com


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4429👍14😁1🤔1💔1👀1💘1🦄1
⚡️ Новая методика оценки эффективности моделей перевода от Яндекса — RATE представлена на EMNLP 2025: система показывает, где модели теряют естественность речи

На международной конференции компания показала RATE (Refined Assessment for Translation Evaluation) — инструмент, который анализирует качество перевода с учётом естественности речи. Одна из ключевых задач системы — выявлять ситуации, когда модель формально передаёт смысл, но выбирает неверный тон или стиль.

В отличие от существующих методик, RATE фиксирует широкий спектр отклонений: от стилистических несоответствий до ошибок в передаче регистров речи. На тестировании RATE обнаружила в 7 раз больше ошибок, чем MQM (Multidimensional Quality Metrics) и ESA (Error Span Annotation), что подчёркивает ограниченность прежних подходов.

Инструмент уже применяется в процессах развития моделей перевода Яндекса. Такой метод оценки позволяет точнее сопоставлять решения нейросетей с реальными пользовательскими сценариями — от деловых коммуникаций до бытовых диалогов.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2919🥰9👍4🥱2🎄1💘1
Media is too big
VIEW IN TELEGRAM
✔️ Дарио Амодей: Anthropic не объявляет «красных кодов» в ответ на релизы.

Пока Сэм Альтман переводит OpenAI в режим «code red» после выхода Gemini 3, Anthropic демонстративно отказывается от паники. На саммите NYT Dealbook, CEO компании? Дарио Амодей заявил, что им не нужно реагировать на каждый шаг конкурентов авралами, так как у Anthropic принципиально иной вектор развития.

Вместо гонки за вниманием и метриками вовлеченности, Anthropic глубоко фокусируется на корпоративном сегменте. Дарио говорит, что их приоритет - высокая интеллектуальная деятельность: генерация чистого кода, научные исследования и сложная аналитика. Он также скептически оценил огромные бюджеты техногигантов, назвав их финансовую политику «YOLO-стратегией».
businessinsider.com

✔️ Anthropic выложила датасет из 1250 диалогов.

Проект Anthropic Interviewer - инструмент для автоматизации социологических исследований. Он позволяет проводить глубокие интервью в промышленных масштабах, делегируя роль интервьюера ИИ.

Компания опубликовала результаты первого масштабного эксперимента: массив из 1250 транскриптов бесед. В выборку попали представители массовых профессий, ученые и работники креативных индустрий. ИИ выяснял, как специалисты реально интегрируют нейросети в свои рабочие процессы и как оценивают карьерные риски. Датасет доступен на HuggingFace под лицензией CC-BY.
anthropic.com

✔️ Google запустила no-code платформу создания ИИ-агентов.

Google представила инструмент Workspace Studio для упрощения автоматизации в корпоративных средах. Платформа, построенная на Gemini 3, позволяет создавать кастомных ИИ-агентов без написания кода всего за несколько минут.

Инструмент получил глубокую интеграцию в экосистему Google: созданные помощники работают непосредственно внутри Gmail, Drive и Chat, беря на себя рутину: обработка почты, управление расписанием или анализ документов. Заявлена возможность подключения внешних систем - Asana, Jira, Mailchimp и Salesforce. Доступ к студии уже открыт для бизнес- и энтерпрайз-подписчиков.
workspace.google.com

✔️ Perplexity открыла модель BrowseSafe для защиты ИИ-браузеров от промпт-инъекций.

BrowseSafe - решение для обеспечения безопасности агентного веба. Инструмент защищает ИИ-ассистентов от вредоносных инструкций, которые злоумышленники скрывают в структуре веб-страниц.

Угроза заключается в способности агентов считывать весь HTML-код, включая невидимые пользователю элементы (комментарии, скрытые поля и мета-теги). Хакеры могут внедрять туда команды, перехватывающие управление моделью. BrowseSafe выступает в роли легковесного детектора: он сканирует контент в реальном времени и блокирует подозрительные инструкции до того, как они попадут в контекст основной LLM.

В релиз также вошел бенчмарк BrowseSafe-Bench, содержащий более 14 тысяч сценариев атак для тестирования надежности систем.
perplexity.ai

✔️ OpenAI проиграла спор о конфиденциальности.

Суд Манхэттена постановил, что компания должна передать The New York Times и другим новостным изданиям массив анонимизированных переписок пользователей. Это решение принято в рамках громкого процесса об авторских правах: истцы утверждают, что модели OpenAI незаконно обучались на их контенте.

Судья отклонила аргументы OpenAI о рисках для приватности, посчитав меры по обезличиванию данных достаточными. Доступ к логам важен для истцов: они намерены доказать, что ChatGPT способен дословно воспроизводить защищенные авторским правом статьи. OpenAI уже подала апелляцию, называя требование нарушением стандартов безопасности, но по текущему решению обязана подготовить данные в течение 7 дней.
reuters.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2719🦄5🔥3😢2😁1
🌟 CUDA-L2: ИИ научился писать CUDA-ядра эффективнее инженеров NVIDIA.

Исследовательская группа DeepReinforce разработала систему полностью автоматического написания GPU-кода для матричного умножения под названием CUDA-L2.
Этот код работает на 10–30% быстрее, чем cuBLAS и cuBLASLt, а это, на минуточку, уже оптимизированные библиотеки от самой NVIDIA.

Обычно такие библиотеки создаются вручную людьми, которые используют готовые шаблоны ядер. А автотюнеры лишь подкручивают параметры, например, размер тайлов.

Но DeepReinforce считают, что даже критически важные и глубоко оптимизированные задачи, как HGEMM, могут быть улучшены с помощью LLM, работающей в связке с RL.

В системе CUDA-L2 языковая модель буквально пишет исходный код CUDA с нуля для каждого размера матрицы. Она не просто меняет параметры, она может менять структуру кода, циклы, стратегию тайлинга, паддинг и даже свизл-паттерны. А еще, она сама выбирает стиль программирования - будь то сырой CUDA, CuTe, CUTLASS или inline PTX.

Процесс выглядит так: цикл RL запускает сгенерированные ядра на реальном железе, измеряет скорость и корректность, а затем обновляет LLM. Со временем модель выводит свои собственные правила производительности, вместо того чтобы полагаться на знания, заложенные людьми.

В качестве генератора использовалась модель DeepSeek 671B. Ее дополнительно доучили на смеси массива CUDA-ядер и качественном коде из библиотек PyTorch, ATen, CUTLASS и примеров от NVIDIA.

🟡Что это дает на практике

Для претрейна и файнтюна LLM большая часть времени GPU тратится именно на операции матричного умножения HGEMM. Если ускорить эти ядра на те самые 10–30%, которые обещает CUDA-L2, то весь процесс обучения становится заметно дешевле и быстрее.

Поскольку CUDA-L2 обрабатывает около 1000 реальных размеров матриц, а не пару вручную настроенных, ускорение работает для самых разных архитектур. Это значит, что в тот же бюджет на GPU можно вместить больше токенов обучения, больше прогонов SFT или RLHF и т.д.

🟡Тесты

HGEMM-ядра, созданные CUDA-L2, стабильно быстрее стандартных библиотек.

В так называемом "оффлайн-сценарии" CUDA-L2 работает примерно на 17–22% быстрее, чем torch.matmul, cuBLAS и cuBLASLt. Она даже на 11% обгоняет cuBLASLt AutoTuning, который сам по себе уже использует поиск ядра.

А в "серверном", сценарии, который имитирует реальный инференс с паузами между вызовами - разница еще больше: буст в 24–29% по сравнению с torch.matmul и cuBLAS.


Простым рисёрчем проект не ограничен, в репозитории на Github авторы выложили оптимизированные ядра HGEMM A100 для 1000 конфигураций.

В планах: расширение на архитектуры Ada Lovelace, Hopper, Blackwell, поддержка более плотных конфигураций и 32-битный HGEMM.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #CUDA #DeepReinforce
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10031🔥25🤷61🆒1🦄1
Media is too big
VIEW IN TELEGRAM
✔️ Интеграция ИИ-агентов в GitHub и GitLab небезопасна.

Подключение ИИ-инструментов к рабочим процессам разработки открывает новый вектор атак. Проблема затрагивает Gemini CLI, Claude Code и OpenAI Codex.

Механизм взлома основан на внедрении скрытых инструкций в issues, пулл-реквесты или коммиты. Когда агент считывает этот текст для анализа, он может ошибочно интерпретировать его как прямую команду, а не как пассивные данные.

Тестирование, проведенное Aikido Security показало, что уязвимость актуальна как минимум для 5 компаний из списка Fortune 500. Google оперативно устранила брешь в Gemini CLI, однако эксперты настоятельно рекомендуют инженерам ограничивать полномочия ИИ-агентов и внедрять строгую валидацию входных данных.
aikido.dev

✔️ Google представила архитектуру Titans.

Google Research анонсировала Titans — новую архитектуру, которая решает проблему эффективности обработки огромных массивов данных. Фишка - в механизме «глубокой обучаемой памяти», которая обновляется непосредственно в процессе инференса, превращая работу сети в непрерывный цикл онлайн-обучения.

Вместо сохранения всего контекста Titans использует градиенты как индикатор неожиданности: модель запоминает только те токены, которые несут новую информацию и отсеивает предсказуемые данные. Это позволяет поддерживать контекстные окна объемом более 2 млн. токенов при сохранении линейной скорости вычислений, свойственной RNN.

В тестах на длинный контекст и ризонинг архитектура обошла по производительности Transformer++ и Mamba 2.
research.google

✔️ Отчет OpenRouter: генерация кода и ризонинг-модели захватили 50% мирового ИИ-трафика.

OpenRouter совместно с фондом a16z опубликовали исследование «State of AI», основанное на анализе 100 триллионов обработанных токенов. Главный инсайт — рост популярности рассуждающих моделей: во второй половине 2025 они уже генерируют половину всего трафика платформы.

Драйвером индустрии остается разработка ПО: на задачи по написанию и отладке кода приходится более 50% всех запросов. Одновременно растет доля open-source решений, открытые модели занимают уже треть рынка, локомотивами выступают китайские DeepSeek и Qwen.

Эксперты прогнозируют скорый переход к прокси-инференсу, когда сложные задачи будут автоматически распределяться между несколькими специализированными моделями.
openrouter.ai

✔️ Компания Марка Цукерберга купила стартап Limitless.

Техногигант приобрел компанию Limitless (ранее Rewind), создателя умного кулона, который записывает, транскрибирует и индексирует разговоры пользователя в реальном времени.

Устройство Limitless позиционировалось как аппаратный «расширитель памяти», позволяющий мгновенно находить информацию в прошлых диалогах. Это направление сейчас переживает бум: ранее стартап привлек более $33 млн. инвестиций, в том числе от фонда a16z и Сэма Альтмана.

Согласно заявлению, продажи устройств Limitless новым клиентам будут прекращены. Текущие владельцы гаджетов продолжат получать поддержку, но для дальнейшего использования сервиса им придется принять новые условия конфиденциальности.
reuters.com

✔️ В MIT создали летающего микро-робота с ИИ.

MIT представила устройство размером с насекомое. В основе разработки лежат мягкие приводы и двухуровневый ИИ-контроллер, объединяющий методы предиктивного планирования и имитационного обучения. Такая архитектура позволяет роботу мгновенно адаптироваться к внешним возмущениям.

На тестах микро-бот показал уверенную маневренность, выполнив 10 непрерывных сальто за 11 секунд в условиях сильных порывов ветра. Проект планирует создавать автономные рои для поисково-спасательных миссий: благодаря миниатюрным размерам и ударопрочности, они смогут проникать в узкие расщелины завалов при ЧС.

Следующим этапом станет интеграция бортовых камер и сенсоров для полноценной навигации вне помещений.
news.mit.edu

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4412🔥4😁1🙊1