Аналитики считают: если бы Google выделила бизнес по TPU-чипам вместе с лабораторией DeepMind, то объединённая компания могла бы стоить около $900 млрд.
Пока этого не произойдёт, но сама цифра показывает масштаб.
- 6-е поколение Trillium уже пользуется высоким спросом
- 7-е поколение Ironwood станет первым TPU, ориентированным на крупномасштабный inference — этап, когда модели реально используются после обучения
Anthropic и xAI активно рассматривают переход на TPU, так как улучшенная поддержка через JAX делает их использование на больших масштабах заметно проще.
Google уже заключила сделку с Fluidstack (Нью-Йорк) и ведёт переговоры с другими облачными провайдерами, которые раньше работали в основном с NVIDIA (например, Crusoe и **CoreWeave**).
В итоге Google выходит в прямую конкуренцию с NVIDIA — и впервые за долгое время у «зелёного гиганта» появился серьёзный соперник.
@ai_machinelearning_big_data
#google #nvidia #tpu #deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65🔥19❤10🤔3💘1
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Google DeepMind показала, как роботы учатся работать вместе с помощью обучения с подкреплением.
Учёные из UCL, Google DeepMind и Intrinsic представили новый AI-алгоритм RoboBallet — систему, которая позволяет нескольким роботизированным манипуляторам работать синхронно и без столкновений в сложной производственной среде,.
🔹 В эксперименте участвовали 8 роботов, каждый из которых мог выполнять 40 разных задач в одном общем пространстве.
🔹 Роботы могли брать любую задачу в любом порядке — система сама решала, кому что поручить и как построить безопасные траектории.
🔹 Алгоритм обучался в симуляции, а затем сразу работал в новых условиях без дообучения (*zero-shot*).
Пока решение работает только для задач перемещения (reaching), без учёта порядка выполнения или разных типов роботов.
Однако архитектура гибкая — в будущем возможно добавление сложных задач, зависимостей и разнообразных роботов.
Один алгоритм смог координировать целую команду, делая роботов гибкими и слаженными даже там, где они раньше не работали.
🟢 Подробнее: https://www.science.org/doi/10.1126/scirobotics.ads1204
@ai_machinelearning_big_data
#google #robots #ai #rl
Учёные из UCL, Google DeepMind и Intrinsic представили новый AI-алгоритм RoboBallet — систему, которая позволяет нескольким роботизированным манипуляторам работать синхронно и без столкновений в сложной производственной среде,.
Пока решение работает только для задач перемещения (reaching), без учёта порядка выполнения или разных типов роботов.
Однако архитектура гибкая — в будущем возможно добавление сложных задач, зависимостей и разнообразных роботов.
Один алгоритм смог координировать целую команду, делая роботов гибкими и слаженными даже там, где они раньше не работали.
@ai_machinelearning_big_data
#google #robots #ai #rl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤65👍40🔥21🥱3🤔2🗿1💘1
Forwarded from Machine learning Interview
⚛️🔬🚀 PsiQuantum привлекла рекордные $1 млрд для строительства квантового компьютера с 1 млн кубитов к 2028 году — это крупнейший раунд финансирования в истории квантовых технологий.
📈 Теперь компания оценена в $7 млрд и напрямую конкурирует с Google и IBM в гонке за создание полнофункциональной машины.
💰 Среди инвесторов: BlackRock, Temasek, Baillie Gifford и венчурное подразделение Nvidia.
Квантовые компьютеры рассматриваются как ключ к созданию новых материалов и разработке лекарств, с чем классические методы справиться не могут. Но реальная польза от них появится только тогда, когда кубиты будут достаточно стабильны, а коррекция ошибок станет рабочим стандартом. PsiQuantum делает ставку на фотонные кубиты — частицы света, которые можно производить на обычных полупроводниковых фабриках и использовать с меньшим количеством криогенного оборудования. Именно эта ставка может позволить компании обойти конкурентов.
⚠️ Вызовы
- Полной коррекции ошибок пока нет
- Ранее цель на 2024 год по готовой системе была сорвана
- 1 млн физических кубитов нужен, чтобы получить лишь несколько надёжных логических кубитов для долгих программ
🌍 Контекст
- Конкуренты активно растут: Quantinuum собрал $600M (оценка $10B), IQM — $300M
- IonQ, Rigetti и D-Wave взлетели в капитализации до $22B (с <$5B в ноябре)
- Nvidia участвует в проекте, несмотря на осторожные прогнозы (20 лет до работающих систем), делая ставку на гибридный путь: квантовые + GPU суперкомпьютеры
🏗️ Первую полную квантовую установку PsiQuantum планирует построить в Австралии при поддержке правительства (A$940M), а вторую — в Чикаго.
🔗 Подробнее: https://ft.com/content/0a16281f-6bb4-4e60-a6f0-3a9d6f8d764a
#quantum #ai #nvidia #google #ibm #hardware #future
📈 Теперь компания оценена в $7 млрд и напрямую конкурирует с Google и IBM в гонке за создание полнофункциональной машины.
💰 Среди инвесторов: BlackRock, Temasek, Baillie Gifford и венчурное подразделение Nvidia.
Квантовые компьютеры рассматриваются как ключ к созданию новых материалов и разработке лекарств, с чем классические методы справиться не могут. Но реальная польза от них появится только тогда, когда кубиты будут достаточно стабильны, а коррекция ошибок станет рабочим стандартом. PsiQuantum делает ставку на фотонные кубиты — частицы света, которые можно производить на обычных полупроводниковых фабриках и использовать с меньшим количеством криогенного оборудования. Именно эта ставка может позволить компании обойти конкурентов.
⚠️ Вызовы
- Полной коррекции ошибок пока нет
- Ранее цель на 2024 год по готовой системе была сорвана
- 1 млн физических кубитов нужен, чтобы получить лишь несколько надёжных логических кубитов для долгих программ
🌍 Контекст
- Конкуренты активно растут: Quantinuum собрал $600M (оценка $10B), IQM — $300M
- IonQ, Rigetti и D-Wave взлетели в капитализации до $22B (с <$5B в ноябре)
- Nvidia участвует в проекте, несмотря на осторожные прогнозы (20 лет до работающих систем), делая ставку на гибридный путь: квантовые + GPU суперкомпьютеры
🏗️ Первую полную квантовую установку PsiQuantum планирует построить в Австралии при поддержке правительства (A$940M), а вторую — в Чикаго.
🔗 Подробнее: https://ft.com/content/0a16281f-6bb4-4e60-a6f0-3a9d6f8d764a
#quantum #ai #nvidia #google #ibm #hardware #future
❤40👍23🔥8🤷♂5
Media is too big
VIEW IN TELEGRAM
⦿ Гуманойдные формы могут оказаться ключевыми для повседневного и персонального использования — там, где среда создана под людей.
А вот специализированные роботы будут незаменимы на производстве и в лабораториях.
⦿ В ближайшие пару лет нас ждёт «вау-момент» в робототехнике.
Но фундаментальные модели пока требуют доработки: надёжности и более глубокого понимания реального мира.
⦿ DeepMind работает сразу в двух направлениях:
- как с Android для роботов — универсальный слой ОС, совместимый с любым роботом;
- и с вертикальной интеграцией - разработка конкретных роботов «под ключ».
Идея проста: скоро роботы будут не только на заводах, но и рядом с нами — а управлять ими станет так же привычно, как смартфоном.
@ai_machinelearning_big_data
#DeepMind #Google #DemisHassabis #Robotics
Please open Telegram to view this post
VIEW IN TELEGRAM
1🤔90👍33❤18👀9🎉8🤬3👏2🔥1
🦾 Google представил Gemini Robotics-ER 1.5 - новую модель для роботов, которая умеет видеть, рассуждать, планировать и действовать в реальном мире.
Что она может:
- Понимать пространство и объекты вокруг.
- Разбивать задачу на шаги (например: «убери стол» → план действий).
- Подключать внешние инструменты - поиск, модели для анализа изображений и др.
- Балансировать скорость и точность: быстро реагировать или глубже анализировать.
- Работать безопаснее: учитывать вес предметов и физические ограничения.
Мир слишком сложен для роботов: окружение, сцены, объекты постоянно меняются.
Gemini Robotics-ER помогает роботам соединять понимание и действие.
📌 Пример: робот сортирует мусор.
Он узнаёт местные правила, распознаёт предметы, планирует действия и выполняет всё безопасно.
https://developers.googleblog.com/en/building-the-next-generation-of-physical-agents-with-gemini-robotics-er-15/
@ai_machinelearning_big_data
#Google #Gemini #Robotics #AI #PhysicalAgents
Что она может:
- Понимать пространство и объекты вокруг.
- Разбивать задачу на шаги (например: «убери стол» → план действий).
- Подключать внешние инструменты - поиск, модели для анализа изображений и др.
- Балансировать скорость и точность: быстро реагировать или глубже анализировать.
- Работать безопаснее: учитывать вес предметов и физические ограничения.
Мир слишком сложен для роботов: окружение, сцены, объекты постоянно меняются.
Gemini Robotics-ER помогает роботам соединять понимание и действие.
📌 Пример: робот сортирует мусор.
Он узнаёт местные правила, распознаёт предметы, планирует действия и выполняет всё безопасно.
https://developers.googleblog.com/en/building-the-next-generation-of-physical-agents-with-gemini-robotics-er-15/
@ai_machinelearning_big_data
#Google #Gemini #Robotics #AI #PhysicalAgents
🔥66👍23❤22🤔5💘2
This media is not supported in your browser
VIEW IN TELEGRAM
Google выпустили LiteRT-LM - фреймворк для запуска LLM прямо на устройстве (offline), с минимальной задержкой и без API-вызовов.
Если вы пилите приложения, это полезная штука, потому что:
- Работает на устройстве: нет задержек от удалённых серверов
- Нет расходов на API
- Дает доступ к Локальному GenAI
🔍 Основное
- LiteRT-LM уже используется внутри Gemini Nano / Gemma в Chrome, Chromebook Plus и Pixel Watch.
- Открытый C++ интерфейс (preview) для интеграции в кастомные решения.
- Архитектура: Engine + Session
• Engine хранит базовую модель, ресурсы - общий для всех функций
• Session - контекст для отдельных задач, с возможностью клонирования, копирования “по записи” (Copy-on-Write) и лёгких переключений
- Поддержка аппаратного ускорения (CPU / GPU / NPU) и кроссплатформенность (Android, Linux, macOS, Windows и др.)
- Для Pixel Watch используется минимальный “pipeline” - только необходимые компоненты - чтобы уложиться в ограничения памяти и размера бинарей
Google опенсорснули целый стек для запуска GenAI на устройствах:
- LiteRT быстрый «движок», который запускает отдельные AI-модели на устройстве.
- LiteRT-LM - интерфейс C++ для работы с LLM. Он объединяет сразу несколько инстурментов : кэширование промптов, хранение контекста, клонирование сессий и т.д.
- LLM Inference API - готовые интерфейсы для разработчиков (Kotlin, Swift, JS). Работают поверх LiteRT-LM, чтобы можно было легко встраивать GenAI в приложения.
@ai_machinelearning_big_data
#AI #Google #LiteRT #LiteRTLM #GenAI #EdgeAI #OnDeviceAI #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍98❤31🔥19💘4
This media is not supported in your browser
VIEW IN TELEGRAM
Jules - это ИИ, который умеет писать код, исправлять ошибки и создавать тесты для ваших проектов.
Он подключается к GitHub или другому репозиторию, анализирует кодовую базу и выполняет задачи, которые вы ему задаёте.
С помощью Jules Tools можно запускать и управлять этим агентом напрямую через терминал, без браузера.
Пример, вводите:
jules remote new --session "fix login bug"
После запуска команда создаёт виртуальную машину, клонирует репозиторий, решает задачу и отправляет pull request с готовым исправлением.
Что интересного:
- Командная строка и API для управления агентом
- Асинхронные задачи и параллельное выполнение
- Скрипты и автоматизация (через CI, cron, pipelines)
- Память и адаптация под ваш стиль кода
- Безопасное хранение ключей и токенов
- Интерактивный интерфейс в терминале (TUI) с отображением статуса задач в реальном времени
TUI-режим напоминает веб-панель, но работает прямо в консоли, позволяя быстро запускать, отслеживать и управлять сессиями.
Jules можно интегрировать с Slack или системами сборки - агент сам создаёт и выполняет задачи, пока вы занимаетесь другими делами.
Если агент сталкивается с проблемой, то приостанавливает работу и запрашивает помощь, а не «угадывает» решение.
Обе утилиты - Jules и Gemini CLI - работают на Gemini 2.5 Pro, но Jules ориентирован на короткие и точные задачи, а Gemini CLI - на длительную совместную работу.
Бесплатная версия позволяет запускать 15 задач в день (до 3 одновременно).
Платные тарифы - $19.99 и $124.99 - дают лимиты до 100 и 300 задач.
Google также планирует добавить поддержку GitLab, Bitbucket и локальных проектов без Git.
@ai_machinelearning_big_data
#Google #Jules #AI #CodingAgent #Gemini25Pro #Automation
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥147❤27👍25🎉12👏7😁6🤩5🥰2🤣2🫡2
🔥 GOOGLE AI опубликовали пост о настоящем прорыве в области QUANTUM AI
Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».
Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.
Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.
🟠 Что это значит простыми словами
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.
Проще говоря:
1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.
2) Затем применяют обратные операции, как будто “перематывают” процесс назад.
3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.
4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.
Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.
Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.
«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.
*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.
🟢 Статья: https://www.nature.com/articles/s41586-025-09526-6
@ai_machinelearning_big_data
#QuantumComputing #Google #AI #Nature #Physics
Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».
Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.
Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.
Проще говоря:
1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.
2) Затем применяют обратные операции, как будто “перематывают” процесс назад.
3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.
4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.
Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.
Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.
«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.
*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.
@ai_machinelearning_big_data
#QuantumComputing #Google #AI #Nature #Physics
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥292👍255❤100🤔70👏53🥰31😐22🤩17🤗13👌6🤓6
⏱️ Speedrun Science: как ИИ-команды Кремниевой долины работают по 100 часов в неделю
Ведущие AI-команды Кремниевой долины работают по 80–100 часов в неделю, стараясь выпускать модели и функции быстрее конкурентов.
Речь идёт об Anthropic, Microsoft, Google, Meta, Apple и OpenAI, где взят темп «прорыв → релиз» измеряется уже месяцами, а не годами. Основная тяжесть ложится на узкий круг инженеров и исследователей, которые буквально живут между тестами и деплоями, в то время как остальная организация работает в нормальном режиме.
Руководители называют это «уникальным окном возможностей» - и многие принимают нагрузку ради влияния на сферу, любопытства и доли в успехе.
В стартапах даже встречаются контракты с ожидаемыми 80+ часами работы, хотя чаще культура компаний сама к этому подталкивает.
Чтобы поддерживать ритм, компании внедряют ротацию “captains” - инженеров, следящих за работой над моделями 24×7.
Разрыв между «исследованием и внедрением» сжался до «разницы между четвергом и пятницей».
Исследователи говорят, что обучение по-прежнему непредсказуемо, поэтому графики постоянно меняются по итогам реальных результатов. Атмосфера -«speedrun-науки».
Один из фаундеров пошутил:
Источник: wsj.com/tech/ai/ai-race-tech-workers-schedule-1ea9a116
@ai_machinelearning_big_data
#AI #Tech #Startups #SiliconValley #OpenAI #Anthropic #Microsoft #Google
Ведущие AI-команды Кремниевой долины работают по 80–100 часов в неделю, стараясь выпускать модели и функции быстрее конкурентов.
Речь идёт об Anthropic, Microsoft, Google, Meta, Apple и OpenAI, где взят темп «прорыв → релиз» измеряется уже месяцами, а не годами. Основная тяжесть ложится на узкий круг инженеров и исследователей, которые буквально живут между тестами и деплоями, в то время как остальная организация работает в нормальном режиме.
Руководители называют это «уникальным окном возможностей» - и многие принимают нагрузку ради влияния на сферу, любопытства и доли в успехе.
В стартапах даже встречаются контракты с ожидаемыми 80+ часами работы, хотя чаще культура компаний сама к этому подталкивает.
Чтобы поддерживать ритм, компании внедряют ротацию “captains” - инженеров, следящих за работой над моделями 24×7.
Разрыв между «исследованием и внедрением» сжался до «разницы между четвергом и пятницей».
Исследователи говорят, что обучение по-прежнему непредсказуемо, поэтому графики постоянно меняются по итогам реальных результатов. Атмосфера -«speedrun-науки».
Один из фаундеров пошутил:
«Если 9-9-6 — это график с 9 утра до 9 вечера, 6 дней в неделю,
то у нас – 0-0-2: с полуночи до полуночи, с 2-часовым перерывом на выходных».
Источник: wsj.com/tech/ai/ai-race-tech-workers-schedule-1ea9a116
@ai_machinelearning_big_data
#AI #Tech #Startups #SiliconValley #OpenAI #Anthropic #Microsoft #Google
👍64😨59❤16🫡16🏆6🔥5🦄4😁3
💸 Apple будет платить Google около $1 млрд в год, чтобы новая Siri работала на Gemini AI.
Компания завершает сделку по использованию 1.2-триллионной модели Gemini для масштабного апгрейда Siri. Запуск - весна 2026.
Главное:
- Apple протестировала ChatGPT, Claude и Gemini, прежде чем выбрать Google
- Gemini в 8 раз больше нынешней 150B-модели Apple Intelligence
- Запуск будет через Apple Private Cloud Compute - данные остаются изолированы от Google
- Внутреннее кодовое имя проекта - «Linwood»
Apple подаёт это как временное решение, пока сама строит собственную модель на 1 триллион параметров.
Рыночек отреагировал:
$AAPL +0.04%, $GOOGL +2.44% на фоне новости.
https://www.bloomberg.com/news/articles/2025-11-05/apple-plans-to-use-1-2-trillion-parameter-google-gemini-model-to-power-new-siri
@ai_machinelearning_big_data
#Google #Apple #Gemini
Компания завершает сделку по использованию 1.2-триллионной модели Gemini для масштабного апгрейда Siri. Запуск - весна 2026.
Главное:
- Apple протестировала ChatGPT, Claude и Gemini, прежде чем выбрать Google
- Gemini в 8 раз больше нынешней 150B-модели Apple Intelligence
- Запуск будет через Apple Private Cloud Compute - данные остаются изолированы от Google
- Внутреннее кодовое имя проекта - «Linwood»
Apple подаёт это как временное решение, пока сама строит собственную модель на 1 триллион параметров.
Рыночек отреагировал:
$AAPL +0.04%, $GOOGL +2.44% на фоне новости.
https://www.bloomberg.com/news/articles/2025-11-05/apple-plans-to-use-1-2-trillion-parameter-google-gemini-model-to-power-new-siri
@ai_machinelearning_big_data
#Google #Apple #Gemini
1🔥73🤣47❤27👍10🤝6😁3🎉1🌭1😨1🤷1
Forwarded from Анализ данных (Data analysis)
🤖 Google представила Nested Learning — новую парадигму ИИ, которая учится как человек и не забывает прошлые знания
Google предлагает новый подход: Nested Learning - *вложенное обучение*, при котором новая информация интегрируется в уже существующую структуру знаний, а не замещает её.
Как это работает?
Каждое новое обучение добавляется внутрь уже выученного, как слой внутри слоя.
Это позволяет модели:
- сохранять предыдущие навыки
- адаптироваться к новым задачам
- отличать, в каком контексте она работает
Что это даёт?
1. Постоянное обучение без потерь
Модель может учиться бесконечно, не забывая старое. Новые знания не затирают прежние.
2. Контекстное понимание
ИИ понимает, *в каком режиме* он работает — это делает поведение гибче и разумнее.
3. Ближе к человеческому мышлению
Nested Learning приближает нейросети к человеческому типу обучения: поэтапному, постепенному и адаптивному.
📌 Подробнее: https://research.google/blog/introducing-nested-learning-a-new-ml-paradigm-for-continual-learning
#google
@data_analysis_ml
Google предлагает новый подход: Nested Learning - *вложенное обучение*, при котором новая информация интегрируется в уже существующую структуру знаний, а не замещает её.
Как это работает?
Каждое новое обучение добавляется внутрь уже выученного, как слой внутри слоя.
Это позволяет модели:
- сохранять предыдущие навыки
- адаптироваться к новым задачам
- отличать, в каком контексте она работает
Что это даёт?
1. Постоянное обучение без потерь
Модель может учиться бесконечно, не забывая старое. Новые знания не затирают прежние.
2. Контекстное понимание
ИИ понимает, *в каком режиме* он работает — это делает поведение гибче и разумнее.
3. Ближе к человеческому мышлению
Nested Learning приближает нейросети к человеческому типу обучения: поэтапному, постепенному и адаптивному.
📌 Подробнее: https://research.google/blog/introducing-nested-learning-a-new-ml-paradigm-for-continual-learning
@data_analysis_ml
👍172👏117❤64🔥32🥰20🤩19😁7🎉7🤔3💯3🤣2
Это понятное и структурированное введение в основы агентных систем.
В гайде рассматриваются:
- архитектура агента и его основные компоненты
- роль LLM как «мозга» агента
- подключение и использование инструментов
- оркестрация нескольких агентов
- подходы к деплою и продакшн-интеграции
- метрики и способы оценки работы
- как создаются самообучающиеся и эволюционирующие агенты
- пример архитектуры AlphaEvolve
📌 Гайд: https://drive.google.com/file/d/1C-HvqgxM7dj4G2kCQLnuMXi1fTpXRdpx/view
@ai_machinelearning_big_data
#AI #Agents #Google #LLM #MachineLearning #AIResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
❤67🔥29👍27⚡5🙈4🙏2
💰 Уоррен Баффетт делает ставку на Google и это может изменить настроение на рынке
Berkshire Hathaway открыла новую крупную позицию в Alphabet на 4.3 млрд долларов. Впервые за долгие годы компания входит в Google таким масштабом и сразу поднимает его в десятку крупнейших активов своего портфеля.
При это Berkshire сократили Apple примерно на пятнадцать процентов хотя она всё ещё остаётся главным активом компании,
В целом Berkshire продаёт больше чем покупает, но для Google делает редкое исключение
Что это может значить
- Баффетт обычно избегает дорогих технологических компаний.
- Инвестиция в Alphabet выглядит как уверенность в том что ИИ сервисы Google могут быть недооценены рынком
Такой шаг может подтолкнуть более осторожных инвесторов пересмотреть отношение к ИИ сектору
Berkshire снижает риски по рынку но видит в Google одну из немногих точек уверенного роста.
Когда даже Баффетт - человек, который десятилетиями обходил большие технологии стороной - впервые заходит в Alphabet на миллиарды, это говорит о потенциале дальнейшего роста рынка, а не о пузыре.
cnbc.com/2025/11/14/warren-buffetts-berkshire-hathaway-reveals-new-position-in-alphabet.html
@ai_machinelearning_big_data
#Alphabet #Google #Finance
Berkshire Hathaway открыла новую крупную позицию в Alphabet на 4.3 млрд долларов. Впервые за долгие годы компания входит в Google таким масштабом и сразу поднимает его в десятку крупнейших активов своего портфеля.
При это Berkshire сократили Apple примерно на пятнадцать процентов хотя она всё ещё остаётся главным активом компании,
В целом Berkshire продаёт больше чем покупает, но для Google делает редкое исключение
Что это может значить
- Баффетт обычно избегает дорогих технологических компаний.
- Инвестиция в Alphabet выглядит как уверенность в том что ИИ сервисы Google могут быть недооценены рынком
Такой шаг может подтолкнуть более осторожных инвесторов пересмотреть отношение к ИИ сектору
Berkshire снижает риски по рынку но видит в Google одну из немногих точек уверенного роста.
Когда даже Баффетт - человек, который десятилетиями обходил большие технологии стороной - впервые заходит в Alphabet на миллиарды, это говорит о потенциале дальнейшего роста рынка, а не о пузыре.
cnbc.com/2025/11/14/warren-buffetts-berkshire-hathaway-reveals-new-position-in-alphabet.html
@ai_machinelearning_big_data
#Alphabet #Google #Finance
👍69❤27🤔18😁8🤗4🔥2🥰2💋2🎅1