383K subscribers
4.43K photos
850 videos
17 files
4.87K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🚀 Qwen3-4B-Instruct-2507 и Qwen3-4B-Thinking-2507 — ловите еще один апдейт от Qwen: LLM с поддержкой 256K контекста

🧠 Qwen3-4B-Instruct — идеально подойдёт для:
• генерации текстов
• многоязычных задач
• сложных промптов

🧠 Qwen3-4B-Thinking — заточен под:
• логику
• математику
• программирование и технический анализ

Обе модели стали:
• точнее
• логичнее
• лучше справляются с длинными диалогами


🔗 Модели на Hugging Face:
https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507

🔗 Модели на ModelScope:
https://modelscope.cn/models/Qwen/Qwen3-4B-Instruct-2507
https://modelscope.cn/models/Qwen/Qwen3-4B-Thinking-2507

@ai_machinelearning_big_data

#AI #ML #qwen #opensource
👍81🔥4420👨‍💻2
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Jan-v1: локальная 4B-модель для веба — опенсорсная альтернатива Perplexity Pro

📌 Что умеет
- SimpleQA: 91% точности, чуть выше Perplexity Pro — и всё это полностью локально.
- Сценарии: быстрый веб-поиск и глубокое исследование (Deep Research).

Из чего сделана
- Базируется на Qwen3-4B-Thinking (контекст до 256k), дообучена в Jan на рассуждение и работу с инструментами.

Где запускать
- Jan, llama.cpp или vLLM.

Как включить поиск в Jan
- Settings → Experimental Features → On
- Settings → MCP Servers → включите поисковый MCP (например, Serper)

Модели
- Jan-v1-4B: https://huggingface.co/janhq/Jan-v1-4B
- Jan-v1-4B-GGUF: https://huggingface.co/janhq/Jan-v1-4B-GGUF

@ai_machinelearning_big_data

#ai #ml #local #Qwen #Jan
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8524🔥20
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Qwen-Image-Edit — новый инструмент для умного редактирования картинок от Qwen

Теперь можно не только генерировать изображения, но и редактировать их по команде: менять объекты, стиль, фон или даже текст прямо на картинке.

Что умеет:
- Редактировать смысл и детали — можно, например, повернуть объект, сменить цвет или стиль, не трогая остальное.
- 🔤 Менять текст на картинках — добавлять, убирать или редактировать надписи на китайском и английском, при этом сохраняются шрифт и стиль.
- 🏆 Лучшие результаты на тестах — модель показывает топ-уровень среди открытых решений.

Как работает:
Система сочетает понимание картинки (VL-модель) и точное управление структурой (VAE-кодировщик). Поэтому картинка сохраняет и смысл, и детали после правок.

🟢 Как попробовать:
Достаточно открыть Qwen Chat и выбрать режим *Image Editing*.

🟠Попробовать: https://chat.qwen.ai/?inputFeature=image_edit
🟠Hugging Face: https://huggingface.co/Qwen/Qwen-Image-Edit
🟠ModelScope: https://modelscope.cn/models/Qwen/Qwen-Image-Edit
🟠Blog: https://qwenlm.github.io/blog/qwen-image-edit/
🟠Github: https://github.com/QwenLM/Qwen-Image
🟠API (💰$0.03 за 1 редактирование): https://alibabacloud.com/help/en/model-studio/qwen-image-edit


@ai_machinelearning_big_data

#qwen #ml #llm #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7540🔥25😐2🙈2😁1
🚀 Релиз: Qwen3-Next-80B-A3B - эффективная модель заточенная на работа работу с очень длинным контекстом!

🔹 80B параметров, но активируется только 3B на токен → тренировка и инференс 10x дешевле и быстрее, чем у Qwen3-32B (особенно при 32K+ контексте).
🔹 Гибридная архитектура: Gated DeltaNet + Gated Attention → сочетает скорость и точность.
🔹 Ultra-sparse MoE: 512 экспертов, маршрутизируется 10 + 1 общий.
🔹 Multi-Token Prediction → ускоренное speculative decoding.
🔹 По производительности обходит Qwen3-32B и приближается к Qwen3-235B в рассуждениях и long-context задачах.

🟢Qwen3-Next-80B-A3B-Instruct показатели почти на уровне 235B flagship.
🟢 Qwen3-Next-80B-A3B-Thinking превосходит Gemini-2.5-Flash-Thinking.

Попробовать: https://chat.qwen.ai
Анонс: https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
HuggingFace: https://huggingface.co/collections/Qwen/qwen3-next-68c25fd6838e585db8eeea9d
ModelScope: https://modelscope.cn/collections/Qwen3-Next-c314f23bd0264a
Kaggle: https://kaggle.com/models/qwen-lm/qwen3-next-80b
Alibaba Cloud API: https://alibabacloud.com/help/en/model-studio/models#c5414da58bjgj

@ai_machinelearning_big_data

#AI #LLM #Qwen #DeepLearning #MoE #EfficientModels #LongContext #Reasonin
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
72👍33🔥21🌭2👏1
⚡️ Qwen-ASR Toolkit — мощный Python CLI для быстрой транскрипции длинных аудио и видео

Эта утилита снимает ограничение API Qwen-ASR (бывший Qwen3-ASR-Flash) в 3 минуты и позволяет расшифровывать часы контента. Достигается это за счёт умного разбиения записи и параллельной обработки.

Основные возможности:
- Снятие лимита в 3 минуты - транскрибируй файлы любой длины
- Умное разбиение (VAD - это технология, которая определяет, где в аудио есть речь, а где — пауза или шум.) - деление по естественным паузам, без
- Высокая скорость - многопоточность и параллельные запросы к API
- Автоматический ресемплинг — конвертация в нужный формат 16kHz mono
- Поддержка любых форматов — MP4, MOV, MKV, MP3, WAV, M4A и др.
- Простота - запуск одной командой через CLI

🟢 Установка:


pip install qwen3-asr-toolkit


🔗 GitHub: https://github.com/QwenLM/Qwen3-ASR-Toolkit

@ai_machinelearning_big_data


#asr #speech2text #qwen #opensource #nlp #toolki
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍73👌3919🔥9🤩4👏2🥱2💘1
⚡️ Вышли новые версии Qwen3-Next-80B в формате FP8!

📌 Модели:
- Qwen3-Next-80B-A3B-Instruct-FP8: 80B, обученная в формате Instruct. Сочетает MoE-архитектуру и FP8-квантование, при большом размере работает быстро и кушает меньше памяти, поддерживает длинный контекст - до 262k токенов (с расширением до миллиона) и оптимизирована для сложных задач рассуждения и работы с большими документами.
- Qwen3-Next-80B-A3B-Thinking-FP8
— Thinking модель, с акцентом на рассуждения, и решение логических задач. Гибридное внимание: Gated DeltaNet + Gated Attention → работа с супердлинными контекстами. Thinking-версия** показывает топ-результаты на задачах рассуждений, обгоняя не только Qwen3-30B/32B, но и закрытую Gemini-2.5-Flash-Thinking

- FP8-точность → быстрый инференс при сохранении качества.
- Полная совместимость с Transformers, vLLM и SGLang.
- Подходит для продакшн-задач, где важны скорость и эффективность.

🟠Hugging Face: https://huggingface.co/collections/Qwen/qwen3-next-68c25fd6838e585db8eeea9d
🟠ModelScope: https://modelscope.cn/collections/Qwen3-Next-c314f23bd0264a

@ai_machinelearning_big_data


#qwen #opensource #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
53👍23🔥14❤‍🔥1👌1💘1
🚀 День релизов: Qwen выпустили Qwen3-Omni — первый нативный end-to-end *omni-modal AI*

Модель обрабатывает текст, изображения, аудио и видео в одной модели.

На бенчмарках выглядит так, как будто все модальности работают одинаково качественно.

⚡️ Особенности
- Первое место на 22 из 36 аудио- и мультимодальных бенчмарков
- Поддержка: 119 языков текста,
- Минимальная задержка — 211 мс
- Обработка аудио до 30 минут длиной
- ПОзволяет гибко настраивать через системные промпты
- Встроенный tool calling

🌟 Open-source релизы
Компания выложила три версии:
- Qwen3-Omni-30B-A3B-Instruct
- Qwen3-Omni-30B-A3B-Thinking
- Qwen3-Omni-30B-A3B-Captioner

👉 Попробовать можно здесь:
💬 Chat: https://chat.qwen.ai/?models=qwen3-omni-flash
💻 GitHub: https://github.com/QwenLM/Qwen3-Omni
🤗 Hugging Face: https://huggingface.co/collections/Qwen/qwen3-omni-68d100a86cd0906843ceccbe
🤖 ModelScope: https://modelscope.cn/collections/Qwen3-Omni-867aef131e7d4f
🎬 Demo: https://huggingface.co/spaces/Qwen/Qwen3-Omni-Demo

@ai_machinelearning_big_data


#qwen #opensource #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11544🔥34💘1
🚀 Qwen Chat получил интересные апдейты

Теперь в Qwen Chat можно не только искать данные в интернете, но и сразу визуализировать их графиками благодаря связке *Code Interpreter + Web Search*.

Пример, можно прогноз погоды на 7 дней и получить готовый график прямо в чате.

📈 Если хотите быстро построить диаграмму по найденным данным, то просто напишите это в промоет.

Попробовать можно здесь: https://chat.qwen.ai

@ai_machinelearning_big_data


#qwen #llm
🔥9226🥰8👍3😁2🙈2😢1🍓1
🚀Qwen выпустили гайд по работе с Qwen3-VL!

Это подборка интерактивных ноутбуков, демонстрирующих возможности Qwen3-VL - как при локальном запуске, так и через API.

Внутри - десятки реальных примеров с разборами:

Работа с изображениями и рассуждение по ним
Агент для взаимодействия с интерфейсами (Computer-Use Agent)
Мультимодальное программирование
Распознавание объектов и сцен (Omni Recognition)
Продвинутое извлечение данных из документов
Точное определение объектов на изображении
OCR и извлечение ключевой информации
3D-анализ и привязка объектов
Понимание длинных документов
Пространственное рассуждение
Мобильный агент
Анализ и понимание видео

🟠GitHub: https://github.com/QwenLM/Qwen3-VL/tree/main/cookbooks
🟠 API-документация: https://alibabacloud.com/help/en/model-studio/user-guide/vision/
🟠 Попробовать: https://chat.qwen.ai/?models=qwen3-vl-plus
🟠Qwen3-VL: https://github.com/QwenLM/Qwen3-VL/blob/main/cookbooks

@ai_machinelearning_big_data


#Qwen #Qwen3VL #AI #VisionLanguage #Multimodal #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
84🔥28👍23💘1
Media is too big
VIEW IN TELEGRAM
⚡️ Qwen Deep Research получил полезное обновление

Теперь он создаёт не только отчёты, но и готовые веб-страницы и подкасты.

Работает связка Qwen3-Coder, Qwen-Image и Qwen3-TTS.

👉Попробовать: chat.qwen.ai/?inputFeature=deep_research

@ai_machinelearning_big_data


#Qwen #AI #DeepResearch #Qwen3 #AItools
Please open Telegram to view this post
VIEW IN TELEGRAM
40🔥26👍12🥰4🐳3🤔2👏1
🔍 Qwen3-VL-2B-Thinking — новая маленькая мультимодальная модель, заточенная под рассуждения

Компактная версия семейства Qwen3-VL, ориентированная на глубокое мышление, аналитику и агентные применения.

В линейке Qwen-VL предусмотрены два ключевых режима:
- *Instruct* — для диалогов и инструкций,
- *Thinking* — для логических рассуждений, кода и комплексных задач.

💡 Особенности
- Архитектура поддерживает мультимодальность: модель понимает текст и изображения, способна анализировать контент и выстраивать причинно-следственные связи.
- Оптимизирована для reasoning-задач, где важна не генерация текста, а последовательное мышление и вывод.
- Благодаря размеру в 2B параметров, модель легко разворачивается на локальных GPU и в облачных окружениях.
- Поддерживает tool calling и интеграцию в агентные фреймворки.

Qwen3-VL-2B-Thinking - отличная модель при минимальных ресурсах.

👉 https://huggingface.co/Qwen/Qwen3-VL-2B-Thinking

@ai_machinelearning_big_data


#Qwen3VL #Qwen #Reasoning #AI #Multimodal #OpenSource
👍22761🔥47😎11🎉9👏7🤔7🥰6🤩5🤗3🦄3
🚀 Qwen выпустила DeepResearch 2511 - обновление глубокого исследования.

Основные изменения:
Добавлены два режима работы д
- Normal - быстрый и универсальный
- Advanced - тратит больше времени на анализ, чтобы дать максимально глубокий разбор

📄 Поддержка загрузки файлов
Теперь можно отправлять документы и изображения прямо в модель для анализа.

Улучшенный поиск
Обновлённый механизм быстрее считывает и обрабатывает веб-информацию, углубляя результаты исследования.

📊 Точный контроль отчётов
Можно задавать структуру отчёта: объём, количество абзацев, формат и детализацию. Улучшена надёжность цитирования.

🧑‍💻 Новый UX
Переработанная архитектура делает интерфейс заметно быстрее и отзывчивее.

🔗 Web: https://chat.qwen.ai/?inputFeature=deep_research
📱 App: https://qwen.ai/download

@ai_machinelearning_big_data

#qwen
👍4520🔥12👏2
⚡️ Qwen3-VL: выпустили технический отчёт по новой линейке VLM

Опубликован tech report по Qwen3-VL - мультимодальным моделям, работающим с изображениями и текстом.

Кратко :
- Три модели собрали 1M+ загрузок за месяц.
- Qwen3-VL-8B - более 2M скачиваний.
- Линейка развивает идеи Qwen2.5-VL (2800+ цитирований).

Что описано в отчёте:
- Архитектура vision–language модели.
- Процесс обучения: pretraining + post-training.
- Источники данных и методы фильтрации.
- Сравнения с другими VLM и ключевые метрики.

🔗 PDF: https://arxiv.org/pdf/2511.21631
🔗
Видео: https://www.youtube.com/watch?v=clwFmuJX_wQ

@ai_machinelearning_big_data

#Qwen #Qwen3 #QwenVL #Qwen3VL #LLM #AIModel
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
140🔥17👍9❤‍🔥3👌2🦄2