NVLM-1.0-D-72B - первая модель семейства NVLM 1.0 производственного уровня, которое позиционируется как SOTA в задачах "vision-language".
Для достижения SOTA - цели в мультимодальное обучение был включен высококачественный набор данных, предназначенный только для текста, наряду со значительным объемом мультимодальных данных по математике и рассуждениям, что расширило математические и программные возможности во всех модальностях.
Архитектура NVLM 1.0 предполагает 3 варианта исполнения:
Все эти варианты NVLM используют общий визуальный кодер InternViT-6B-448px-V1-5.
Для обработки изображений с высоким разрешением используется динамический подход с высоким разрешением (DHR), при котором изображение разбивается на несколько плиток, каждая из которых кодируется отдельно.
Чтобы повысить эффективность обработки динамических изображений с высоким разрешением в NVLM-D и NVLM-X была разработана конструкция текстового тега плитки. Этот тег добавляется к входной последовательности, чтобы указать начало плитки и ее положение в структуре мозаики. Так генеративные модели лучше понимают структуру изображения.
Эксперименты показали, что добавление тегов плитки значительно улучшает производительность как в задачах, связанных с мультимодальным мышлением (например, MMMU и MathVista), так и в задачах, связанных с распознаванием текста (ChartQA, DocVQA и OCRBench).
Для оценки NVLM 1.0 использовались 9 эталонных тестов Vision language и четыре текстовых теста. Результаты NVLM 1.0 оказались сопоставимыми с результатами ведущих проприетарных и общедоступных моделей, как в задачах на взаимодействие зрения и языка, так и в задачах, ориентированных только на текст.
Разработчики подготовили файл сборки необходимого окружения в Dockerfile для запуска и примеры кода для инференса, использования нескольких GPU и загрузки модели.
@ai_machinelearning_big_data
#AI #ML #MMLM #NVLM #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥20👍12❤7😁1
RevAI, лидер в области профессиональной транскрипции английской речи выпустила в открытый доступ фреймdорк Reverb и набор моделей для построения конвейера speech-to-text.
Reverb включает в себя: модель ASR на базе WeNet и 2 версии модели диаризации речи. Весь паплайн Reverb можно запускать как на CPU, так и на GPU.
Reverb ASR обучалась на 200 000 часов английской речи, профессионально транскрибированной людьми — это самый большой корпус транскрибированной человеком речи, когда-либо использовавшийся для обучения модели с открытым исходным кодом.
Она позволяет контролировать уровень дословности выходного транскрипта для создания чистого, удобочитаемого текста и справляется с обработкой аудио, требующего транскрипции каждого произнесенного слова, включая запинания и перефразирования.
Reverb ASR использует совместную архитектуру CTC/attention и поддерживает несколько режимов декодирования. Указать один или несколько режимов можно в
recognize_wav.py. Для каждого режима будут созданы отдельные выходные каталоги. Варианты декодирования: В оценке Reverb ASR использовались три корпуса длинных аудиозаписей: Rev16 (подкасты), Earnings21 и Earnings22 (телефонные разговоры).
Reverb ASR значительно превосходит конкурентов в тестовых наборах ASR для длинных форм, особенно в Earnings22, где в основном речь носителей английского языка не как родного.
Для традиционного бенчмаркинга использовался GigaSpeech, Reverb ASR запускался в дословном режиме на скриптах оценки Hugging Face Open ASR Leaderboard. По их результатам Reverb ASR значительно превосходит конкурентов в тестовых наборах ASR для длинных форм.
Reverb diarization v1 использует архитектуру pyannote 3.0 и имеет 2 слоя LSTM со скрытым размером 256, всего около 2,2 млн параметров, а Reverb diarization v2 использует WavLM вместо функций SincNet в базовой модели pyannote 3.0.
Обе модели диаризации прошли донастройку на 26 000 часах данных с экспертной разметкой.
⚠️ Для локальной установки понадобится Huggingface API KEY
@ai_machinelearning_big_data
#AI #ML #ASR #Diarization #REVAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥19👍8❤6
Проект на Github, который предлагает запуск LLM на графических ускорителях AMD с помощью Docker-контейнера. Образ разработан для работы с моделями из Hugging Face, в первую очередь с семейством моделей LLama.
Для запуска необходимо иметь GPU AMD с поддержкой ROCm (версии 5.4.2 и выше) и установленный Docker.
Для адаптации логики инференса под свои нужды, внесите соответствующие изменения в файл
run_inference.py с последующей пересборкой Docker-образа.В проекте предусмотрен файл
Aptfile, содержащий список необходимых пакетов ROCm (rocm-dev, rocm-libs, rocm-cmake, miopen-hip и rocblas) , устанавливаемых в Docker-контейнере.# Clone repo:
git clone https://github.com/yourusername/amd-gpu-inference.git
cd amd-gpu-inference
# Make the run script executable:
chmod +x run-docker-amd.sh
# Run the inference engine with a specified model and prompt:
# Replace "meta-llama/Llama-2-7b-chat-hf" with the HF model you want to use, and provide your own prompt
./run-docker-amd.sh "meta-llama/Llama-2-7b-chat-hf" "Prompt"
@ai_machinelearning_big_data
#AI #ML #LLM #ROCm #AMD
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24❤10🔥10
BrainChip анонсировала Akida Pico — нейроморфный процессор с энергопотреблением всего 1 мВт, предназначенный для устройств с ограниченным питанием: смартфоны, носимая электроника и умные устройства.
Akida Pico имитирует работу мозга, обмениваясь электрическими импульсами (спайками) вместо традиционных логических цепей. Чип включает нейронный процессор, блоки обработки событий, SRAM для хранения весов модели, блоки прямого доступа к памяти и дополнительные периферийные устройства. В некоторых случаях он может работать автономно.
BrainChip разработала архитектуры моделей ИИ, оптимизированные для минимального энергопотребления, снижая потребление энергии в пять раз по сравнению с традиционными моделями на обычных микропроцессорах. Akida Pico может использоваться для голосовой активации, шумоподавления в наушниках, AR-очках и слуховых аппаратах.
spectrum.ieee.org
Gemini Live запускает поддержку генеративного ИИ-помощника на более чем 40 языках. Инструмент позволит общаться на двух языках на одном устройстве, и в разработке находится дальнейшее расширение одновременно поддерживаемых языков.
Многоязычная поддержка также будет работать с интеграцией Gemini для других приложений и сервисов Google: Google Календарь, Задачи, Keep и Утилиты.
Установить предпочитаемые языки в приложении Android: «Настройки» > «Google Ассистент» > «Языки» и выберите первый предпочитаемый язык. Для второго языка есть опция «Добавить язык».
О планах по выпуску Gemini Live для iPhone не сообщалось.
engadget.com
В MIT CSAIL разработали метод Message-Passing Monte Carlo (MPMC), основанный на GNN, которые позволяют точкам самооптимизироваться и достигать лучшей равномерности для решения сложных многомерных задач. GNN преобразуют случайные выборки, минимизируя L2-расхождение, что позволяет MPMC создавать наборы точек, подходящие для конкретных приложений.
В вычислительных финансах MPMC может улучшить результаты в задачах ценообразования опционов и оценки рисков, а в робототехнике - помочь в планировании пути и движении для оптимальной навигации роботов.
news.mit.edu
CharacterAi решила отказаться от разработки больших языковых моделей и сосредоточиться на улучшении потребительской платформы. Это решение было принято после сделки с Google, в рамках которой интернет-гигант приобрел единовременную лицензию на технологию CharacterAi.
Рост затрат на обучение моделей усложнил конкуренцию с Google, Microsoft, OpenAI и Amazon. Компания решила сконцентрироваться на создании масштабируемой платформы чат-ботов, аудитория которой, по оценкам, насчитывает более 20 миллионов активных пользователей в месяц.
Несмотря на уход основателей и сокращение амбиций в области разработки моделей, компания с оптимизмом смотрит в будущее благодаря финансированию от Google.
btimesonline.com
BM Research и NASA совместно разработали Prithvi WxC – модель глубокого обучения для прогнозирования погоды и моделирования климата с 2,3 млрд. параметров и 160 переменными из набора данных MERRA-2.
Модель использует трансформерную архитектуру для обработки долгосрочных зависимостей, комбинацию локальных и глобальных механизмов внимания для обработки больших объемов данных и эффективного захвата пространственно-временных закономерностей.
Prithvi WxC обучается с помощью комбинированной функции цели, которая объединяет задачи маскированной реконструкции и прогнозирования, что повышает ее универсальность в различных приложениях, включая прогнозирование с авторегрессионным развертыванием и оценку экстремальных погодных явлений.
Arxiv | Модель на HF | Проект на Github
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍39❤7🔥2🥱1
Depth Pro - базовая модель для метрической монокулярной оценки глубины по по одному изображению в режиме zero-shot. Она позволяет синтезировать Hi-Res карты глубины с высокой точностью определения границ объектов, воспроизводя их форму, расположение и абсолютный масштаб без использования метаданных камеры.
Архитектура модели основана на применении энкодеров ViT к фрагментам изображения, извлеченным в нескольких масштабах.
Используются два кодировщика ViT: фрагментный энкодер, обрабатывающий блоки изображения для изучения масштабно-инвариантных представлений и энкодер изображения, фиксирующий предсказания в глобальном контексте.
Модель работает с фиксированным разрешением 1536x1536 пикселей, а каждый из модулей ViT - 384x384 пикселей.
Для обучения используются 5 целевых функций (LMAE, LMSE, LMAGE, LMALE и LMSGE ) на основе канонической обратной глубины и применяется двухэтапный план обучения. Набор данных состоит из 43 датасетов.
Первый этап учит обобщающим признакам, основанным на смеси реальных и синтетических данных, а второй — повышению резкости границ на синтетических данных с точной информацией о глубине.
Модель показала высокую точность на различных наборах данных (Booster, ETH3D, Middlebury, nuScenes, Sintel и Sun-RGBD91011) .
Depth Pro превзошла другие методы по точности оценки фокусного расстояния на наборах данных DDDP, FiveK, PPR10K, RAISE, SPAQ и ZOOM.
Скорость инференса, замеренная в тестировании - 0,3 секунды на генерацию карты глубины 2,25-мегапиксельного изображения.
# setting up a venv:
conda create -n depth-pro -y python=3.9
conda activate depth-pro
pip install -e .
# Download pretrained checkpoints:
source get_pretrained_models.sh
# Run the inference from CLI on a single image:
depth-pro-run -i ./data/example.jpg
# Running from python
from PIL import Image
import depth_pro
model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.
@ai_machinelearning_big_data
#AI #ML #ViT #Depth #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥39👍18❤7🥰1
Платформа с открытым исходным кодом, предназначенная для бенчмаркинга геномных фундаментальных моделей.
PocketDTA - модель для предсказания drag-target affinity (DTA), использующая трехмерную структурную информацию о лекарстве и целевом материале.
ZODIAC разработан для помощи кардиологам в диагностике клинически значимых аритмий с использованием данных пациентов, собранных в реальных условиях.
PROEDIT - методика обучения с техникой с "забыванием знаний" (knowledge unlearning) для выборочного удаления информации из предварительно обученной языковой модели белка для прогнозирования эффекта мутации.
ReXplain (Radiology eXplanation) - система на основе ИИ, которая генерирует понятные для пациентов видеоотчеты по результатам рентгенологических исследований.
Методология оценки медицинских аргументов, сгенерированных LLM, основанная на прокси-задачах и ранжировании. Позволяет точнее сопоставить результаты с критериями оценки человека и преодолеть типичные галлюцинации в LLM, используемых в качестве оценщиков.
MVSF-AB - метод, основанный на машинном обучении, который использует информацию о последовательности антитела и антигена для точного предсказания аффинности связывания.
Метод построения математических моделей биологических систем с использованием данных и нейронных сетей.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
❤20🔥8👍5😁2
trl-X - метод, который позволяет управлять структурой и внешним видом изображений, создаваемых диффузионными моделями без необходимости дополнительного обучения или использования инструкций.
Ctrl-X предлагает управляемую генерацию, разделяя ее на две основные составляющие: сохранение пространственной структуры и семантически-осведомленный перенос стиля.
Для управления структурой используется прямая инъекция признаков сверточных слоев и карт внимания из входного изображения, который задает структуру.
Для переноса внешнего вида c входного источника применяется метод, основанный на статистике признаков, который учитывает пространственное соответствие между исходным и генерируемым изображениями.
Анализ карт внимания позволяет выявить семантические соответствия между ними и перенести стилистические характеристики с учетом их пространственного расположения.
Метод Ctrl-X не привязан к конкретным моделям и может применяться к любым диффузионным моделям T2I (текст-изображение) и T2V (текст-видео).
Программная реализация Ctrl-X на модели Stable Diffusion XL 1.0 поддерживает запуск с Gradio UI и инференс в CLI.
В обоих типах запуска Ctrl-X (Gradio и CLI) предусмотрена возможность оптимизации потребления VRAM : ключи запуска
cpu_offload и disable_refiner.Примерная утилизация VRAM для Gradio с использованием оптимизации выглядит следующим образом:
# Clone the repository
git clone https://github.com/genforce/ctrl-x.git
# Create Conda environment
conda env create -f environment.yaml
conda activate ctrlx
# Run Gradio Demo
python app_ctrlx.py
# or run CLI inference
python run_ctrlx.py \
--structure_image assets/images/horse__point_cloud.jpg \
--appearance_image assets/images/horse.jpg \
--prompt "a photo of a horse standing on grass" \
--structure_prompt "a 3D point cloud of a horse"
@ai_machinelearning_big_data
#AI #ML #Diffusers #CtrlX
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍34❤9🔥9🥱2