376K subscribers
4.5K photos
882 videos
17 files
4.94K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
📌Early-fusion vs Late-fusion: как архитектура влияет на эффективность мультимодальных моделей.

Исследование, проведенное Apple и Университетом Сорбонны в котором были проанализировали 457 архитектур, чтобы выяснить, действительно ли позднее слияние модальностей (late-fusion — когда изображения и текст обрабатываются отдельно до объединения ) имеет преимущества перед ранним слиянием (early-fusion). Оказалось, что early-fusion не только не уступают, но и превосходятlate-fusion при ограниченных ресурсах, требуя меньше параметров и быстрее обучаясь.

Early-fusion, где данные разных модальностей объединяются на начальных этапах, показал более высокую эффективность на небольших моделях. На модели с 300 млн. параметров такие архитектуры достигают лучших результатов с меньшими вычислительными затратами. Плюс, их проще развертывать — отсутствие отдельных визуальных энкодеров сокращает требования к инфраструктуре.

✔️ Ключевой вывод ресерча: мультимодальные модели масштабируются по законам, близким к языковым.

Оптимальное соотношение параметров и данных для обучения почти одинаково, но early-fusion требует меньше параметров при том же бюджете: при увеличении вычислительных ресурсов late-fusion вынуждена наращивать размер модели, тогда как early-fusion эффективнее использует дополнительные токены.

Авторы также проверили, как влияет на результаты внедрение MoE — техники, где модель динамически распределяет специализированные «эксперты» для разных типов данных.

Оказалось, MoE значительно улучшает производительность: разреженные модели с 8 экспертами сокращают потери на 15-20% по сравнению с плотными аналогами. При этом эксперты неявно специализируются — часть обрабатывает текст, другая фокусируется на изображениях, особенно в начальных и финальных слоях.

✔️ Практические советы из исследования:

🟢Экономия на инференсе: раннее слияние снижает стоимость вывода за счёт компактности.

🟢Данные важнее параметров: для MoE увеличение объёма обучающих данных даёт больший прирост качества, чем рост числа активных параметров.

🟢Универсальный роутинг: модели с «агностическим» распределением экспертов (без жёсткой привязки к модальностям) работают лучше, чем системы с предопределёнными правилами.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #MMLM #ScalingLaw #MoE
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62🔥2820👏1
🌟 GLM-4.5 и GLM-4.5-Air: релиз гибридных моделей, заточенных под агентные задачи.

В новом семействе GLM, Z.AI объединили в одной модели возможности для рассуждений, кодинга и агентных сценариев. Семейство построено на архитектуре MoE и может работать в двух режимах: thinking mode для сложных задач с использованием инструментов и non-thinking mode для быстрых ответов.

🟡В релиз вошли:

🟢GLM-4.5 с 355 млрд. общих параметров (32 млрд активных) и ее облегченная версия;

🟠GLM-4.5-Air, облегченная версия со 106 млрд. общих параметров (12 млрд активных).

Интересно, что разработчики пошли по пути увеличения глубины модели (количества слоев), а не ширины (скрытого измерения), так как обнаружили, что модели с большим количеством слоев лучше справляются с рассуждениями.

🟡 Для эффективного RL таких крупных моделей был разработан и открыт собственный фреймворк slime.

Он поддерживает как синхронное, так и асинхронное обучение, что критически важно для агентных задач. Его инфраструктура полностью разделяет движки для роллаутов (сбора опыта) и движки для обучения, которые могут работать на разном железе.

🟡Главный акцент GLM-4.5 - агентные возможности.

Для их оценки использовались 3 бенчмарка. На TAU-bench модель GLM-4.5 показала результат в 70.1 балла, что практически идентично Claude 4 Sonnet (70.3) и заметно лучше, чем у o3 (61.2).

На бенчмарке для вызова функций Berkeley Function Calling Leaderboard v3 результат составил 77.8, снова опережая Claude 4 Sonnet с ее 75.2 баллами.

Но самый показательный результат был на BrowseComp, сложном тесте для веб-браузинга. В нем GLM-4.5 набрала 26.4, что выше, чем у Claude-4-Opus (18.8) и почти как у o4-mini-high (28.3).

Что касается классических задач на рассуждения, здесь модели показывают уверенные, хотя и не рекордные, результаты.

На MMLU Pro у GLM-4.5 84.6 балла, чуть меньше, чем у Claude 4 Opus (87.3) и Grok 4 (86.6).

В математическом тесте AIME24 модель набрала 91.0, ближайшие лидеры Qwen3 и Grok 4 - 94.1 и 94.3 соответственно.

На GPQA разрыв побольше: 79.1 у GLM-4.5 против 87.7 у Grok 4, а на сложном тесте по научной литературе HLE модель получила 14.4 балла, уступив Gemini 2.5 Pro (21.1) и Grok 4 (23.9).

В задачах, связанных с кодом, на тесте SWE-bench Verified модель набрала 64.2 балла, немного уступая Claude 4 Sonnet (70.4) и o3 (69.1), но опережая многие другие.

А вот в агентном кодинге, который оценивался людьми с помощью Claude Code, картина иная. В прямом сравнении GLM-4.5 выигрывает у Kimi K2 в 53.9% случаев и обходит Qwen3-Coder с винрейтом 80.8%.

Самый важный показатель - успешность вызова инструментов, где GLM-4.5 достигла 90.6%, опередив Claude-4-Sonnet (89.5%) и Kimi-K2 (86.2%).


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Набор моделей
🟡Demo
🟡Сообщество в Discord
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #GLM #MoE #ZAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
66👍22🔥16👨‍💻1
🚀 Hunyuan-Large-Vision: новая мощная мультимодальная модель от Tencent

🔹 MoE-архитектура — 389B параметров (52B активных) для оптимального баланса мощности и эффективности.
🔹 Лидер в рейтингах — 1256 баллов в LMArena Vision, #1 в Китае, на уровне GPT-4.5 и Claude-4-Sonnet.
🔹 Глубокое понимание — визуальное рассуждение, анализ видео и 3D-пространства, 79,5 баллов в среднем по бенчмарку OpenCompass.

📌 Модель дополняет линейку Hunyuan-TurboS-Vision и Hunyuan-T1-Vision, доступных через Tencent Cloud для задач в самых разных отраслях.

🟢Попробовать: https://hunyuan.tencent.com/modelSquare/home/list?modelKey=VisionUnderstand
🟢 Блог: https://vision.hunyuan.tencent.com
🟢API: https://cloud.tencent.com/document/product/1729/104753

@ai_machinelearning_big_data


#AI #Multimodal #MachineLearning #MoE #VisionAI #Tencent #Hunyuan #LLM #ComputerVision #3DVision
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4515🔥13🥱1
🚀 Релиз: Qwen3-Next-80B-A3B - эффективная модель заточенная на работа работу с очень длинным контекстом!

🔹 80B параметров, но активируется только 3B на токен → тренировка и инференс 10x дешевле и быстрее, чем у Qwen3-32B (особенно при 32K+ контексте).
🔹 Гибридная архитектура: Gated DeltaNet + Gated Attention → сочетает скорость и точность.
🔹 Ultra-sparse MoE: 512 экспертов, маршрутизируется 10 + 1 общий.
🔹 Multi-Token Prediction → ускоренное speculative decoding.
🔹 По производительности обходит Qwen3-32B и приближается к Qwen3-235B в рассуждениях и long-context задачах.

🟢Qwen3-Next-80B-A3B-Instruct показатели почти на уровне 235B flagship.
🟢 Qwen3-Next-80B-A3B-Thinking превосходит Gemini-2.5-Flash-Thinking.

Попробовать: https://chat.qwen.ai
Анонс: https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
HuggingFace: https://huggingface.co/collections/Qwen/qwen3-next-68c25fd6838e585db8eeea9d
ModelScope: https://modelscope.cn/collections/Qwen3-Next-c314f23bd0264a
Kaggle: https://kaggle.com/models/qwen-lm/qwen3-next-80b
Alibaba Cloud API: https://alibabacloud.com/help/en/model-studio/models#c5414da58bjgj

@ai_machinelearning_big_data

#AI #LLM #Qwen #DeepLearning #MoE #EfficientModels #LongContext #Reasonin
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
72👍33🔥21🌭2👏1
⚡️ Ling-flash-2.0 теперь в открытом доступе! ⚡️

Модель 100 B параметров, но задействовано всего ≈6.1B активных, что делает модель очень экономной.

🚀 Чем хороша Ling-flash-2.0
- Обучена на более чем 20 триллионах токенов с до-обучением и RL-этапами.
- Демонстрирует state-of-the-art производительность среди плотных моделей до 40B параметров.
- Особенно хороша в сложном рассуждении, генерации кода и задачах с фронтендом.

⚙️ Архитектура и эффективность
- MoE-архитектура с активированием лишь части параметров (activation ratio 1/32).
- Много технических фишек: продвинутое распределение экспертов, баланс внимания, схема маршрутизации без вспомогательных потерь и др.
- На железе H20 модель генерирует 200+ токенов в секунду - в 3× быстрее по сравнению с плотной моделью 36B.
- Поддерживает контексты до 128K токенов (с YaRN).

https://huggingface.co/inclusionAI/Ling-flash-2.0

@ai_machinelearning_big_data


#moe #llm #ml #ai #opensource
👍32550👏26🔥21🎉16😁10🤩8🥰7😢5😍5🏆5
🚀 Новая китайская модель LongCat-Flash-Thinking

🧠 Это модель для рассуждений, которая показала SOTA-результаты среди open-source решений.

Основное:
- Архитектура MoE, 560B параметров, из них 27B активируются.
- Эффективность: требует на **64,5% меньше токенов**( чем другим открытым моделям того же класса), чтобы достичь топ-результатов на AIME25 (с нативным использованием инструментов,).
- Контекст: 128k, обучение с усилением на задачах рассуждений и кода, многоэтапное пост-тюнинг обучение с мультиагентным синтезом.
- Инфраструктура: асинхронный RL даёт 3x ускорение по сравнению с синхронными фреймворками.

⚙️ Оптимизации для продакшена:
- Свои оптимизированные ядра для работы с MoE и специальные приёмы распределённого обучения,
- KV-cache reduction, квантование, chunked prefill,
- статическая/эластичная маршрутизация, peer-to-peer cache transfer, heavy-hitter replication и PD-disaggregation.
- Поддержка SGLang и vLLM для эффективного деплоя.

📊 Бенчмарки:
- Лидирует в tool use (**τ²-Bench, VitaBench**)
- Хорошие результаты по instruction following (**IFEval, COLLIE, Meeseeks-zh**).

Китайцы стабильно удерживают лидерство в reasoning-моделях.

🟠 HF: https://huggingface.co/meituan-longcat/LongCat-Flash-Thinking

@ai_machinelearning_big_data


#AI #LLM #Reasoning #MoE #DeepLearning #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4018🥰8👍4💘1
This media is not supported in your browser
VIEW IN TELEGRAM
💡 RND1 - новая экспериментальная модель с 30 миллиардами параметров, построенная по архитектуре Sparse Mixture-of-Experts, где активно 3 миллиарда параметров.

Она была преобразована из предварительно обученной авторегрессионной модели (Qwen3-30B-A3B) и затем дополнительно обучена на 500 миллиардах токенов, чтобы полностью поменять поведениие диффузионной модели.

Обычные модели (AR, автогрессионные) пишут текст слово за словом, а RND1 создаёт всё предложение сразу и потом пошагово уточняет его, как будто “проявляет” текст из шума.

Это - Diffusion Language Model (DLM), аналог диффузионных моделей, которые рисуют картинки, только здесь она “рисует” слова.

🔄 Как её сделали

Команда Radical Numerics придумала, как превратить готовую модель в диффузионную без обучения с нуля.

Они просто поменяли тип внимания и дообучили модель на новой задаче.

Этот метод называется AR-to-Diffusion Conversion (A2D) - то есть конверсия из автогрессионной модели в диффузионную.

Как это происходит:
1. Берут сильную GPT-подобную модель.
2. Меняют механизм внимания — теперь модель видит весь контекст сразу.
3. Продолжают обучение по диффузионной задаче.
4. Используют разные скорости обучения для разных частей сети, чтобы модель не забыла старое, но научилась новому способу мышления.

⚙️ Что под капотом

Mixture-of-Experts (MoE) - у модели 30 млрд параметров, но реально работают только 3 млрд за раз. Это делает её мощной, но экономной.

Непрерывное дообучение - старые знания не стираются, а “встраиваются” в новый режим.

Огромные батчи - модель учится на больших партиях данных, чтобы стабилизировать обучение, ведь она не обрабатывает все токены сразу.

✔️ Чем RND1 интересна:

- Параллельная генерация - текст создаётся быстрее, без пошаговой задержки.
- Меньше затрат - активных параметров всего 3 млрд, при этом качество как у больших GPT.
- Новая архитектура - открывает дорогу гибридным моделям, сочетающим плюсы AR и DLM.
- Полностью открытый код и веса - можно исследовать, изменять, запускать самому.
- Первый серьёзный шаг к самосовершенствующемуся ИИ- модель может не только обучаться, но и помогать в проектировании следующей версии.

Это реально интересный метод, RND1 показывает, что ИИ можно не просто обучать, а перестраивать - менять его саму логику мышления без начала “с нуля”.

Похоже, это может стать фундаментом для систем Recursive Self-Improvement (RSI), когда ИИ способен создавать и улучшать самого себя.

🟠Blog: https://radicalnumerics.ai/blog/rnd1

🟠Code: https://github.com/RadicalNumerics/RND1

🟠Report: https://radicalnumerics.ai/assets/rnd1_report.pdf

🟠Веса: https://huggingface.co/radicalnumerics/RND1-Base-0910

🟠Видео: https://www.youtube.com/watch?v=M8XdNsecroo

@ai_machinelearning_big_data


#RND1 #RadicalNumerics #AI #DLM #DiffusionModel #MoE #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍75🔥3532
⚡️ LongCat-Flash-Omni - открытая 560B MoE-модель (27B активных параметров), которая умеет вести живой диалог в реальном времени, слышать, видеть и отвечать голосом.

Ключевые фишки:
-модель разговаривает и видит собеседника, реагирует на беседу в реальном времени
- 128K контекст
- продвинутая MoE-архитектура: высокое качество при меньших затратах (27B активных параметров из 560B)
- Полгный open-source

По тестам:
- лидер на OmniBench, DailyOmni
- хорошие показатели на ASR (распознавании речи), DocVQA, RefCOCO
- обходит лучше Qwen3-Omni Instruct
- и очень близка к Gemini-2.5-Flash, но это все таки*открытая* модель

Открытая мультимодальная модель, которую можно запускать локально, хороший вариант для голосовых ассистентов.

🤖 Model: https://modelscope.cn/models/meituan-longcat/LongCat-Flash-Omni
🌐 Demo: https://longcat.ai
📄 Full technical report & code:
https://github.com/meituan-longcat/LongCat-Flash-Omni

@ai_machinelearning_big_data


#AI #OpenSourceAI #Multimodal #MoE #LLM #GenAI
🔥6346👍24
💡 DeepSeek выложили новый open-source проект — LPLB.

Это экспериментальный балансировщик нагрузки для моделей Mixture-of-Experts (MoE).

В репозитории описано, как система:
• динамически перераспределяет экспертов, опираясь на статистику нагрузки;
• создаёт реплики с учётом топологии кластера;
• решает оптимальное распределение токенов по экспертам через LP-решатель, работающий прямо на GPU (cuSolverDx + cuBLASDx);
• использует метрики загрузки, полученные вручную, через torch.distributed или через буферы Deep-EP.

Гайд показывает, как может выглядеть умный и точный балансировщик для больших MoE-архитектур.

GitHub: https://github.com/deepseek-ai/LPLB

ai_machinelearning_big_data

#DeepSeek #LPLB #MoE #AIInfrastructure #OpenSource
48🔥25👍19🙉3😁2🥰1
🌟 ZAYA1: первая MoE-модель, полностью обученная на стеке AMD.

Есть устойчивое мнение, что серьезное обучение нейросетей возможно только на чипах одной известной компании.

В Zyphra решили доказать обратное, и, в сотрудничестве с AMD и IBM провели эксперимент, который на практике доказал, что есть альтернатива.

Стартап опубликовал техотчет и результат - модель ZAYA1. Это первая модель архитектуры MoE, обученная полностью на платформе AMD.

Сеттинг проекта был действительно "красным": графические процессоры AMD Instinct, сетевые интерфейсы AMD Pensando и программный стек ROCm.

ZAYA1 получилась довольно интересной. У неё 8.3 млрд. общих параметров, из которых активных всего 800 миллионов.

Несмотря на компактность, в тестах она выглядит бодро. В ризонинге, математике и программирование ZAYA1 обошла Llama-3-8B и OLMoE. А по общим показателям встала в один ряд с Qwen3-4B и гугловской Gemma3-12B.

Обучение проходило на кластере IBM Cloud, где модель переварила 14 трлн. токенов. Но дело не только в железе, в папйплайне использовали архитектурные инновации:

🟢Новый механизм внимания - Compressed Convolutional Attention. Он использует свертки внутри блока внимания, это снизило нагрузку на вычисления и память.

🟢Переделали маршрутизатор MoE. Вместо стандартного линейного роутера, ZAYA1 использует сложную последовательность операций, что заставляет "экспертов" внутри нейросети специализироваться гораздо лучше.

🟢Residual Scaling. Добавили обучаемые скалярные гейты в остаточный стрим на выходы каждого блока, чтобы модель контролировала степень забывания.


⚠️ Для запуска инференса потребуется ветка zaya форка transformers из репозитория Zyphra.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Модель
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #MoE #Zyphra
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4923🔥13😁7🦄3🙏1
🌟 Trinity Nano и Trinity Mini: ответ американских разработчиков на китайское доминирование.

В последний год любой, кто следит за развитием моделей с открытыми весами знает - Китай недостижим.

Qwen и DeepSeek фактически задали стандарт того, как должна выглядеть современная архитектура MoE. В США же большинство компаний занимались лишь доработкой чужих чекпоинтов.

И вот, американская компания Arcee AI собралась Make America Great Again вернуть инициативу и создать семейство открытых моделей, обученных "от и до" в США, весами которых бизнес может владеть по-настоящему.

Компания столкнулась с тем, что корпоративным клиентам нужна "юрисдикционная безопасность" . Специалистов по комплаенсу уже не устраивает ответ "мы дообучили модель неизвестного происхождения". Им нужен полный контроль над пайплайном данных.

Семейство моделей Arcee AI получило имя Trinity. Пока в превью-релиз вошли 2 конфигурации:

🟢Trinity Mini — это обычная ризонинг-модель на 26 млрд. общих и 3 млрд активных параметров, обученная с нуля.

🟢Trinity Nano Preview — это модель чата. Она создана, чтобы быть харизматичной и интересной в общении несмотря на свои скромные 6 млрд. общих и 1 млрд. активных параметров.

И пока мы тестируем Nano и Mini, Arcee AI тренирует флагмана Trinity Large.

Его релиз запланирован на январь 2026 года. Это будет модель на 420 млрд. параметров, из которых 13 млрд. будут активны.

Обе доступные модели, Trinity Nano и Trinity Mini выпущены под лицензией Apache 2.0. Они опубликованы на Hugging Face и поддерживаются llama.cpp, LM Studio и vLLM.

Mini также доступна через OpenRouter по очень привлекательной цене - около 4,5 центов за 1 млн. токенов.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Набор моделей
🟡Demo Trinity Mini


@ai_machinelearning_big_data

#AI #ML #MoE #Trinity #ArceeAi
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4418🔥13🥰5🦄3
📌 SAPO: RL-метод, который приручил нестабильные градиенты в LLM и MoE.

Qwen предложил RL-метод SAPO (Soft Adaptive Policy Optimization), который решает ключевую проблему нестабильного обучения LLM и архитектур MoE и предлагает более разумный и мягкий подход к контролю над процессом обучения.

Reinforcement Learning, RL - это ингредиент, превращающий просто большую языковую модель в рассуждающего помощника. Именно RL учит ИИ решать олимпиадные задачи по математике, писать чистый код и понимать связь между текстом и изображением.


Но у RL есть обратная сторона: катастрофическая нестабильность обучения, особенно для гигантских моделей.

Главная техническая головоломка - это контроль над коэффициентами значимости на уровне каждого токена. В архитектурах MoE, где разные части модели активируются для разных задач, эти коэффициенты могут бесконтрольно «скакать».

Слишком большие колебания коэффициентов превращают четкие обучающие сигналы в помехи, дестабилизирующие всю систему.

До сих пор стандартными инструментами были GRPO и GSPO, которые использовали принцип хард-клиппинга. Если коэффициент выходил за заданные рамки, градиент просто обнулялся.

🟠Минус первый: Потеря информации. Ценные, но выбивающиеся данные безжалостно отбрасывались.

🟠Минус второй: Невозможный баланс. Сделаешь рамки узкими - задушишь обучение. Сделаешь широкими - полезет паразитный шум. Для капризных MoE-архитектур эта дилемма особенно актуальна.
SAPO предлагает отказаться от хард-клиппинга в пользу интеллектуального сглаживания.

Вместо резкого обнуления SAPO использует плавную, адаптивную функцию (контролируемую температурой), которая мягко снижает влияние проблемных градиентов, но не обнуляет их полностью. Это создает непрерывные области доверия, внутри которых модель может учиться более гибко и безопасно.

🟡Красота SAPO - в универсальности.

🟢Как GSPO, но умнее. Если в длинном ответе сбился лишь один токен, GSPO наказывает всю последовательность. SAPO избирательно подавляет только «виновника», сохраняя полезные сигналы от остальных слов. Это резко повышает эффективность наборов обучающих данных.

🟢Как GRPO, но плавнее. Вместо резкого отключения градиента для плохого токена SAPO применяет постепенное затухание. Это предотвращает резкие рывки в обучении, обеспечивая плавную и стабильную настройку политики модели.

Вишенка метода - это асимметричный температурный дизайн. SAPO по-разному обрабатывает «хорошие» и «плохие» обновления. Для токенов с негативным вкладом используется более высокая температура, заставляющая их влияние затухать быстрее и сильнее.

Это простое правило надежно гасит наиболее опасные колебания, что на практике приводит к беспрецедентной стабильности процесса RL-обучения.

🟡Теорию подтвердили тестами.

При обучении Qwen3-30B-A3B-Base, SAPO не только показал более стабильную кривую обучения , но и достиг более высоких результатов на сложных математических бенчмарках AIME25, HMMT25. Причем он сделал это без трудоемкого маршрутизирующего воспроизведения, которая требовалась конкурентам для работы с MoE.

Успех повторили в масштабном эксперименте с мультимодальной Qwen3-VL-30B-A3B, где SAPO стабильно обошел аналоги в смешанных задачах на кодинг, логику и математику.


🟡Статья
🟡Arxiv

@ai_machinelearning_big_data

#AI #ML #LLM #MoE #SAPO #Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍48🔥2919🥰6🦄2