Atropos от NousResearch - это гибкий фреймворк для асинхронного управления RL-средами. Его архитектура построена так, чтобы максимизировать эффективность даже в распределенных системах, будь то локальный кластер или облако.
Atropos поддерживает децентрализацию. Он позволяет запускать несколько экземпляров сред (от статических датасетов, интерактивных игр, RLAIF и RLHF до обучения сложным многоэтапным взаимодействиям), которые асинхронно передают данные в центральный узел.
Это избавляет от простоя ресурсов, когда обновления политики модели тормозят из-за ожидания результатов всех окружений. Под капотом — интеграция с любыми API (OpenAI, vLLM, SGLang), позволяя свободу выбора LLM-провайдера без переписывания кода.
Практическая польза протестирована в экспериментах:
Такие результаты достигнуты благодаря многозадачности: фреймворк одновременно управляет разными типами сред, объединяя их в единый тренировочный поток. Вы можете обучать модель на статических данных утром и переключаться на интерактивные игры вечером, не меняя инфраструктуру.
Для разработчиков Atropos предлагает готовые инструменты: от датасетов для тонкой настройки (SFT, DPO) до дебаггеров и визуализации.
Atropos не привязывает вас к конкретному алгоритму RL или инфраструктуре. Запустите 10 экземпляров на ноутбуке или 10 000 через Slurm — фреймворк равномерно распределит нагрузку. Это особенно ценно для исследований: можно быстро экспериментировать с разными подходами, не тратя недели на настройку пайплайнов.
В репозитории есть все, что нужно: коллекция готовых к использованию сред RL, библиотека с базовыми классами и утилитами и примеры конфигураций обучения.
Если хотите понять, как ускорить свои эксперименты с LLM - загляните в документацию проекта, возможно, это именно тот инструмент, который избавит вас от боли асинхронной координации.
@ai_machinelearning_big_data
#AI #ML #LLM #RL #Framework #NousResearch #Atropos
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥46👍30❤19🤣7🐳1
V-Triune - фреймворк с новым методом обучения VL-моделей, через единый алгоритм подкрепления.
В отличие от традиционных методов трейна VLM, сосредоточенных на отдельных задачах вроде решения математических задач или обнаружения объектов, V-Triune обучает модели одновременно работать с рассуждениями и восприятием. RL в V-Triune действует как механизм «настройки» уже заложенных в модель возможностей, а не добавляет новые навыки.
Это достигается за счет 3 ключевых компонентов: форматирования данных на уровне выборок, вычисления наград через специализированные верификаторы и мониторинга метрик по источникам данных.
Например, динамическая награда IoU адаптирует пороги точности для обнаружения объектов — сначала стимулируя базовое понимание, а затем требуя высокой точности.
Тестирование проводилось на бенчмарке MEGA-Bench из440 задач — от анализа графиков до OCR. Экспериментальные модели Orsta (7B и 32B параметров), обученные с V-Triune, показали прирост производительности до +14,1% по сравнению с базовыми версиями.
На задачах восприятия (обнаружение объектов в COCO), улучшения достигли +12,17% для mAP@50. Для математических задач (MathVista) результаты выросли на 5%, а в OCR — на 1-2%. При этом система стабильно работала даже при обучении на смешанных данных, что косвенно подтвердило ее универсальность.
Minimax открыли (но пока не загрузили его в репозиторий) код V-Triune и модели Orsta:
⚠️ В версии 0321 попытки совместного обновления визуального и языкового модулей приводили к взрыву градиентов, поэтому ViT пришлось заморозить. В 0326, благодаря исправлениям в архитектуре, RL-тренинг стал стабильнее. 0326 рекомендуется для задач, где критична точность и надежность форматов ответов.
@ai_machinelearning_big_data
#AI #ML #VLM #RL #Framework #MiniMax
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥70👍20❤16🎄1
SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.
SEAL, по сути, это два разделенных цикла:
Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.
SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.
Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.
В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.
Метод скорее академический и по большей части экспериментальный, у него есть ограничения:
@ai_machinelearning_big_data
#AI #ML #LLM #SEAL #RL #MiT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥67❤32👍26🤣7🤬4👏2🥰1
Microsoft Research представила методы, усиливающие способность языковых моделей, от компактных до гигантских к сложным рассуждениям. Технологии фокусируются на 3 направлениях: архитектура малых моделей, математическая строгость и кросс-доменное обобщение.
Ключ для маленьких моделей (1.5–7 млрд параметров) в имитации человеческого пошагового мышления.
rStar-Math использует алгоритм MCTS в цикле самообучения: сначала декомпозиция задачи на шаги, затем Process Preference Model (PPM), который учит модель оценивать качество каждого шага через "метки награды", и наконец — итеративная доработка. За 4 цикла MCTS, стратегия и PPM совместно улучшают результат.
Logic-RL — это фреймворк обучения с подкреплением, который награждает модель только при идеально оформленном ходе рассуждений и верном ответе, исключая любые попытки выбора обходных путей.
Для математической надежности разработан LIPS, гибрид ИИ и символьных движков. LIPS распределяет задачи: языковая модель распознает паттерны и переформулирует условия (например, неравенства), а символьный решатель выполняет точные преобразования (масштабирование, упрощение).
Чтобы ИИ понимал условия без ошибок, создан нейро-символический фреймворк генерации данных: символьные системы создают задачи, а языковые модели переводят их в "человеческий" текст. Для проверки выводов используются символьная эквивалентность (сравнение формул) и семантическая согласованность (анализ смысла через эмбеддинги), повышая точность на 35%.
Дополнительный бонус — неожиданное обобщение. Тренировка на математике резко улучшила результаты моделей в программировании и естественных науках.
Для унификации подходов создан Chain-of-Reasoning (CoR), позволяющий гибко комбинировать текстовые, программные и символьные рассуждения в одном решении. А Critical Plan Step Learning (CPL) учит ИИ стратегическому планированию: разбивать проблему, выделять ключевые шаги и отбрасывать слабые варианты через комбинацию Plan-based MCTS и Step-APO.
@ai_machinelearning_big_data
#AI #ML #LLM #RL #Reasoning #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤60👍41🔥19🌭5🥰1🤣1
GRESO - это новый алгоритм для эффективного обучения с подкреплением больших языковых моделей, который сокращает вычислительные затраты на 40–60% без потери качества. Его суть в предварительной фильтрации «бесполезных» промптов, тех, что не дают модели обучаться, еще до дорогостоящей стадии rollout (генерации ответов модели).
В основе GRESO — вероятностная модель, предсказывающая, стоит ли прогонять промпт через LLM.
Алгоритм анализирует историю вознаграждений (reward dynamics) за прошлые эпохи обучения: если промпт много раз подряд давал идентичные награды на всех сгенерированных ответах (их называют zero-variance), он, скорее всего, бесполезен и сейчас.
GRESO не блокирует их жестко, он вычисляет вероятность пропуска , опираясь на число идущих подряд «пустых» прогонов и базовую вероятность «исследования». Это позволяет иногда перепроверять сложные промпты, на тот случай, если вдруг модель «доучилась» и теперь они полезны.
Базовая вероятность автоматически настраивается в реальном времени: если доля бесполезных промптов выше целевого значения (например, 25%), GRESO ее снижает, экономя ресурсы; если ниже — повышает, добавляя гибкости. Плюс, алгоритм разделяет промпты на легкие и сложные, применяя к ним разную политику исследования (сложные проверяет чаще, так как они перспективнее для обучения сильной модели).
А чтобы не гонять большие батчи ради пары примеров, размер выборки динамически подстраивается под текущие нужды на основе вычисления из недостающих данных, α — текущей доли пустых промптов и запаса надежности.
Хотя GRESO и экономит сотни часов на H100, делая RL-тюнинг доступнее, у него есть нюансы:
Qwen Math 1.5В или Qwen Math 7b, есть несколько подготовленных скриптов файнтюна в train-scripts.@ai_machinelearning_big_data
#AI #ML #LLM #RL #GRESO
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍49❤23🔥14🥰3👏1🌭1
Reinforcement Learning Teachers (RLT) от Sakana AI - метод обучения LLM рассуждениям, где компактная модель-"учитель" не решает задачи сама, а учится объяснять уже готовые решения так, чтобы студент-модель лучше их усваивала.
Вместо дорогого обучения "с нуля" через проб и ошибку (как в классическом RL), учитель фокусируется на ясности пошаговых пояснений, используя и вопрос, и правильный ответ как подсказку. Это радикально удешевляет процесс и выравнивает цель учителя быть полезным студенту.
Архитектура строится вокруг петли обратной связи. Учителю (например, крошечной модели на 7B параметров) на вход подаются и задача и ее верное решение. Его работа - сгенерировать максимально понятное пошаговое объяснение, как прийти от условия к ответу.
Эффективность учителя измеряется не тем, решил ли он задачу сам (он даже не обязан это уметь), а тем, насколько хорошо студент-модель понимает его объяснение. Ключевая метрика - "логарифмические вероятности": чем выше вероятность, что студент, прочитав объяснение учителя, правильно предскажет следующий шаг или итоговый ответ, тем лучше работа учителя. Это и есть сигнал подкрепления для обучения RLT.
Вся магия метода состоит в этом смещении фокуса RL. Вместо чтоб награждать модель за самостоятельное нахождение ответа (что требует огромных вычислительных ресурсов и приводит к "узкой" специализации), RLT поощряют за педагогическую эффективность.
Благодаря наличию готового ответа во время обучения, в роли учителя могут выступать даже небольшие, дешевые модели, которые не смогли бы решить сложные задачи в одиночку. Объяснения от RLT затем используются как высококачественные данные для обучения (дистилляции или "холодного старта") студент-моделей любого размера.
Главный нюанс: метод требует наличия готовых правильных решений для задач в обучающем наборе. Он не заменяет полностью сбор данных, а перепрофилирует их для обучения "преподаванию".
Пока метод тестировался в основном на задачах математики и естественных наук. Но его сила в эффективности: 7B RLT-учитель превосходит в обучении студентов-гигантов ( 671B DeepSeek R1). Он обучает даже студентов крупнее себя (32B) быстрее (менее суток против месяцев) и лучше, а его объяснения четче, без лишнего "шума" вроде юмора или подсказок калькулятора, свойственных традиционным RL-моделям.
@ai_machinelearning_big_data
#AI #ML #LLM #RL #RLT #SakanaAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤47🔥28👍12🫡3🤔2🌭2✍1
Глубокие исследовательские агенты — не просто чат‑боты, а полноценные ИИ‑ассистенты, способные искать информацию, взаимодействовать с инструментами, планировать и писать отчёты. Ниже — 10 мощных open‑source проектов, которые уже можно протестировать:
1. DeerFlow — модульная система от Bytedance: DeerFlow — open‑source фреймворк от Bytedance для создания модульных LLM-агентов.
Поддерживает:
- планирование действий,
- анализ кода,
- генерацию отчётов (включая Text-to-Speech),
- адаптивную интеграцию инструментов.
Создан для исследований, автоматизации и построения сложных агентных пайплайнов.
https://github.com/bytedance/deer-flow
2. Alita — самообучающийся агент с поддержкой Model Context Protocols (MCP), всё в одном модуле. Alita — агент, который сам придумывает, как ему расширить себя, не полагаясь на заранее написанные сценарии, и уже демонстрирует топовые результаты на сложных тестах.
https://github.com/CharlesQ9/Alita
3. WebThinker — автономный веб‑поиск с логикой "думай‑ищи‑пиши", RL‑обучением и глубокой навигацией
https://github.com/RUC-NLPIR/WebThinker
4. SimpleDeepSearcher — это лёгкий, но эффективный open‑source фреймворк от RUCAIBox, предназначенный для автономного веб-поиска через импровизированные многотуровые сессии:
- Использует Supervised Fine‑Tuning (SFT) вместо сложного RL, что значительно упрощает обучение и снижает вычислительные затраты
- Генерирует реалистичные траектории поиска и рассуждений, симулируя поведение пользователя в живом поисковом окружении .
- Критически отбирает данные по нескольким критериям качества: разнообразие запросов, сложность, структура ответов
5. AgenticSeek — приватный on‑device ассистент с выбором эксперта под задачу и голосовым управлением
https://github.com/Fosowl/agenticSeek
6. Suna — универсальный ассистент: браузер, CLI, работа с файлами, API, деплой
https://github.com/kortix-ai/suna
7. DeepResearcher — это комплексный open-source фреймворк от GAIR‑NLP, предназначенный для обучения LLM‑агентов, способных проводить глубокие исследования в автономном режиме, взаимодействуя с вебом. Использует несколько агентов‑браузеров, которые совместно исследуют веб и обрабатывают информацию
https://github.com/GAIR-NLP/DeepResearcher
8. Search‑R1 — агент на PPO/GRPO с поддержкой LLaMA3, Qwen2.5 и кастомных поисковиков. Агент учится эффективному циклу «думай — ищи — думай — отвечай» через RL, достигая важных улучшений в точности ответов и эффективности поиска.
https://github.com/PeterGriffinJin/Search-R1
9. ReCall — это фреймворк на основе RL, который учит LLM "должным образом" вызывать и комбинировать инструменты, используя сгенерированные задачи, без необходимости вручную собирать примеры вызовов — и всё это в открытом доступе.
https://github.com/Agent-RL/ReCall
10. OWL — мультиагентная система на CAMEL‑AI для динамического взаимодействия между агентами
https://github.com/camel-ai/owl
Агенты умеют планировать, взаимодействовать с браузером, запускать скрипты, интегрироваться с API и работать автономно.
Всё проекты — с открытым кодом. Можно изучить, собрать и доработать под свои задачи.
@ai_machinelearning_big_data
#ml #rl #aiagents #ai #agents
Please open Telegram to view this post
VIEW IN TELEGRAM
❤86🔥40👍22👌2⚡1
X-Omni - методика обучения T2I моделей, которая наглядно доказывает, что RL может вдохнуть новую жизнь в авторегрессионный подход и вывести такие модели на SOTA-уровень.
X-Omni построена на гибридной, но при этом унифицированной архитектуре. Схематично она выглядит так:
Семантический токенизатор изображений SigLIP-VQ с фиксированным словарем на 16 384 токена кодирует картинку в дискретные токены. Эти визуальные токены вместе с текстовыми подаются в единую авторегрессионную модель на базе Qwen2.5-7B. Наконец, в финальном рендеринге используется диффузионный декодер на основе FLUX.1-dev.
Вместо одного критерия, модель оценивается сразу по нескольким направлениям. За эстетику и соответствие предпочтениям человека отвечает HPSv2 и модель Unified Reward. За семантическую связь между промптом и изображением — VLM-модель Qwen2.5-VL-32B. А за самое сложное, отрисовку текста внутри картинки, отвечает отдельная награда на основе OCR-систем GOT-OCR2.0 и PaddleOCR.
Тестовую модель X-Omni обучали на смеси из 200 млн. изображений, которые после токенизации превратились в 600 млрд мультимодальных токенов, а на этапе SFT использовал ещё 1.5 млрд. токенов.
Для RL-фазы был отобран микс из 180 тыс. промптов, состоящий как из творческие запросы, так и задач на рендеринг текста.
На бенче OneIG-Bench X-Omni показала результат 0.901 для английского языка, обойдя GPT-4o (0.857). А на собственном LongText-Bench, специально созданном для оценки рендеринга длинных надписей, модель буквально разгромила всех в китайском языке, набрав 0.814 балла против 0.619 у GPT-4o.
В задачах общей генерации по тексту X-Omni также на высоте. На DPG-Bench модель достигла SOTA-результата 87.65, опередив GPT-4o (86.23) и Show-o2 (86.14). На GenEval результат составил 0.83, чуть-чуть не дотянув до модели Mogao (0.89).
Даже в задачах на понимание изображений X-Omni показывает себя достойно: на OCRBench ее результат (704) превосходит другие унифицированные модели, например Emu3 (687).
Во-первых, X-Omni не нуждается в CFG. В отличие от Emu3 или Janus-Pro, качество которых резко падает при отключении CFG, X-Omni работает стабильно.
Во-вторых, что, пожалуй, самое важное, RL превосходит даже SFT с последующим сэмплингом best-of-N.
Этот вывод идет вразрез с устоявшимся мнением в области языкового моделирования и доказывает, что для изображений холистическая оптимизация через RL дает существенный прирост качества.
@ai_machinelearning_big_data
#AI #ML #T2I #RL #XOmni #Tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤45👍26🥰5🔥4❤🔥1😁1🤔1👨💻1
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Google DeepMind показала, как роботы учатся работать вместе с помощью обучения с подкреплением.
Учёные из UCL, Google DeepMind и Intrinsic представили новый AI-алгоритм RoboBallet — систему, которая позволяет нескольким роботизированным манипуляторам работать синхронно и без столкновений в сложной производственной среде,.
🔹 В эксперименте участвовали 8 роботов, каждый из которых мог выполнять 40 разных задач в одном общем пространстве.
🔹 Роботы могли брать любую задачу в любом порядке — система сама решала, кому что поручить и как построить безопасные траектории.
🔹 Алгоритм обучался в симуляции, а затем сразу работал в новых условиях без дообучения (*zero-shot*).
Пока решение работает только для задач перемещения (reaching), без учёта порядка выполнения или разных типов роботов.
Однако архитектура гибкая — в будущем возможно добавление сложных задач, зависимостей и разнообразных роботов.
Один алгоритм смог координировать целую команду, делая роботов гибкими и слаженными даже там, где они раньше не работали.
🟢 Подробнее: https://www.science.org/doi/10.1126/scirobotics.ads1204
@ai_machinelearning_big_data
#google #robots #ai #rl
Учёные из UCL, Google DeepMind и Intrinsic представили новый AI-алгоритм RoboBallet — систему, которая позволяет нескольким роботизированным манипуляторам работать синхронно и без столкновений в сложной производственной среде,.
Пока решение работает только для задач перемещения (reaching), без учёта порядка выполнения или разных типов роботов.
Однако архитектура гибкая — в будущем возможно добавление сложных задач, зависимостей и разнообразных роботов.
Один алгоритм смог координировать целую команду, делая роботов гибкими и слаженными даже там, где они раньше не работали.
@ai_machinelearning_big_data
#google #robots #ai #rl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤65👍40🔥21🥱3🤔2🗿1💘1
Он обучил модель считать, сколько раз буква r встречается в слове strawberry, и использовал этот пример, чтобы показать, как можно наделять маленькие языковые модели новыми навыками через синтетические задачи.
Сначала генерируются диалоги:
«Сколько букв r в слове strawberry?»
и правильные ответы.
После этого модель проходит дообучение (SFT) или обучение с подкреплением (RL), чтобы закрепить навык.
Карпаты объясняет, что для маленьких моделей важно продумывать всё до мелочей, как разнообразить запросы, как устроена токенизация и даже где ставить пробелы.
Он показывает, что рассуждения лучше разбивать на несколько шагов, тогда модель легче понимает задачу.
Nanochat решает задачу двумя способами:
— логически, рассуждая пошагово;
— через встроенный Python-интерпретатор, выполняя вычисления прямо внутри чата.
Идея в том, что даже крошечные LLM можно «научить думать», если правильно подготовить примеры и синтетические данные.
📘 Разбор: github.com/karpathy/nanochat/discussions/164
@ai_machinelearning_big_data
#AI #Karpathy #Nanochat #LLM #SFT #RL #MachineLearning #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤98👍56🔥19🤗3💘3🗿1
Miles - фреймворк для RL-обучения от команды LMSYS ORG, ориентированный на энтерпрайз-уровень.
Если вы следите за опенсорс разработками, вы наверняка слышали о предшественнике этой системы, проекте slime. Это легкий инструмент, который используют во многих современных пайплайнов пост-трейна. На нем, кстати, запускали GLM-4.6.
Slime доказал, что легковесный дизайн работает, и Miles делает следующий шаг - масштабное обучение архитектур MoE и поддержка тяжелых промышленных нагрузок.
Miles предлагает то, что называют "True On-Policy". Раньше между тренировкой и инференсом часто возникало расхождение. Теперь же, благодаря инфраструктурному подходу, LMSYS добилась нулевой дивергенции. Это стало возможным благодаря использованию Flash Attention 3, библиотеки DeepGEMM и ядер от Thinking Machines Lab, работающих в связке с
torch.compile.Вторая особенность - в использовании спекулятивного декодирования. Обычно в RL черновая модель замораживается, что мешает ей следовать политике целевой модели. LMSYS добавили онлайн-обучение черновой модели.
Результаты на тестах положительные: ускорение генерации более чем на 25%, особенно на поздних стадиях обучения.
Для энтерпрайза память - это деньги. В Miles включили механизмы, предотвращающие падение системы при некритичных ошибках OOM и исправили чрезмерное потребление памяти в FSDP.
В дорожной карте проекта обещают поддержку мультимодального обучения, совместимость со SGLang v2 и расширенное спекулятивное декодирование.
@ai_machinelearning_big_data
#AI #ML #RL #Miles #LMSYS
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍94❤🔥12❤11🔥9🦄4💋1💘1